2024屆高三數(shù)學(xué)第一次學(xué)業(yè)質(zhì)量評(píng)價(jià)試卷(t8聯(lián)考)
高考數(shù)學(xué)當(dāng)中,需要運(yùn)算的知識(shí)是非常的多的,那么關(guān)于高三T8第一次數(shù)學(xué)聯(lián)考試卷怎么做呢?以下是小編準(zhǔn)備的一些2024屆高三數(shù)學(xué)第一次學(xué)業(yè)質(zhì)量評(píng)價(jià)試卷(t8聯(lián)考),僅供參考。
高三T8第一次數(shù)學(xué)聯(lián)考試卷(含答案)
高考數(shù)學(xué)必考答題有什么技巧
一、三角函數(shù)題
注意歸一公式、誘導(dǎo)公式的正確性(轉(zhuǎn)化成同名同角三角函數(shù)時(shí),套用歸一公式、誘導(dǎo)公式(奇變、偶不變;符號(hào)看象限)時(shí),很容易因?yàn)榇中?,?dǎo)致錯(cuò)誤!一著不慎,滿盤皆輸!)。
二、數(shù)列題
1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列;
2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;
3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單(所以要有構(gòu)造函數(shù)的意識(shí))。
三、立體幾何題
1、證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;
2、求異面直線所成的角、線面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),最好要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號(hào)問(wèn)題、鈍角、銳角問(wèn)題)。
高考數(shù)學(xué)答題方法
1、信心要充足,暗示靠自己
答卷中,見(jiàn)到簡(jiǎn)單題,要細(xì)心,不要忘乎所以,謹(jǐn)防“大意失荊州”。面對(duì)偏難的題,要耐心,不能急。考試全程都要確定“人家會(huì)的我也會(huì),人家不會(huì)的我也會(huì)”的必勝信念,使自己始終處于最佳競(jìng)技狀態(tài)。
2、跳步答題
解題過(guò)程卡在某一過(guò)渡環(huán)節(jié)上是常見(jiàn)的。這時(shí),我們可以先承認(rèn)中間結(jié)論,往后推,看能否得到結(jié)論。如果不能,說(shuō)明這個(gè)途徑不對(duì),立即改變方向;如果能得出預(yù)期結(jié)論,就回過(guò)頭來(lái),集中力量攻克這一“卡殼處”。
由于考試時(shí)間的限制,“卡殼處”的攻克來(lái)不及了,那么可以把前面的寫下來(lái),再寫出“證實(shí)某步之后,繼續(xù)有……”一直做到底,這就是跳步解答。
也許,后來(lái)中間步驟又想出來(lái),這時(shí)不要亂七八糟插上去,可補(bǔ)在后面,“事實(shí)上,某步可證明或演算如下”,以保持卷面的工整。若題目有兩問(wèn),第一問(wèn)想不出來(lái),可把第一問(wèn)作“已知”,“先做第二問(wèn)”,這也是跳步解答。