亚洲高清vr播放在线观看,欧美亚洲精品免费,欧美日韩天堂在线视频,午夜福利小视频

      學(xué)習(xí)啦 > > 高二數(shù)學(xué)知識(shí)點(diǎn)及公式總結(jié)

      高二數(shù)學(xué)知識(shí)點(diǎn)及公式總結(jié)

      時(shí)間: 康華0 分享

      高二數(shù)學(xué)知識(shí)點(diǎn)及公式總結(jié)7篇

      我們不僅要立志學(xué)習(xí)好知識(shí)和技能,還要學(xué)會(huì)勇于面對(duì)我們?cè)趯W(xué)習(xí)生活中遇到的各種問(wèn)題,困難和挫折,下面是小編為大家整理的高二數(shù)學(xué)知識(shí)點(diǎn)及公式總結(jié),如果大家喜歡可以分享給身邊的朋友。

      高二數(shù)學(xué)知識(shí)點(diǎn)及公式總結(jié)

      高二數(shù)學(xué)知識(shí)點(diǎn)及公式總結(jié)【篇1】

      一、直線(xiàn)與圓:

      1、直線(xiàn)的傾斜角 的范圍是

      在平面直角坐標(biāo)系中,對(duì)于一條與 軸相交的直線(xiàn) ,如果把 軸繞著交點(diǎn)按逆時(shí)針?lè)较蜣D(zhuǎn)到和直線(xiàn) 重合時(shí)所轉(zhuǎn)的最小正角記為, 就叫做直線(xiàn)的傾斜角。當(dāng)直線(xiàn) 與 軸重合或平行時(shí),規(guī)定傾斜角為0;

      2、斜率:已知直線(xiàn)的傾斜角為α,且α≠90°,則斜率k=tanα.

      過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線(xiàn)的斜率k=( y2-y1)/(x2-x1),另外切線(xiàn)的斜率用求導(dǎo)的方法。

      3、直線(xiàn)方程:⑴點(diǎn)斜式:直線(xiàn)過(guò)點(diǎn) 斜率為 ,則直線(xiàn)方程為 ,

      ⑵斜截式:直線(xiàn)在 軸上的截距為 和斜率,則直線(xiàn)方程為

      4、 , ,① ∥ , ; ② .

      直線(xiàn) 與直線(xiàn) 的位置關(guān)系:

      (1)平行 A1/A2=B1/B2 注意檢驗(yàn)(2)垂直 A1A2+B1B2=0

      5、點(diǎn) 到直線(xiàn) 的距離公式 ;

      兩條平行線(xiàn) 與 的距離是

      6、圓的標(biāo)準(zhǔn)方程: .⑵圓的一般方程:

      注意能將標(biāo)準(zhǔn)方程化為一般方程

      7、過(guò)圓外一點(diǎn)作圓的切線(xiàn),一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線(xiàn).

      8、直線(xiàn)與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長(zhǎng)問(wèn)題.① 相離 ② 相切 ③ 相交

      9、解決直線(xiàn)與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形) 直線(xiàn)與圓相交所得弦長(zhǎng)

      二、圓錐曲線(xiàn)方程:

      1、橢圓: ①方程 (a>b>0)注意還有一個(gè);②定義: PF1+PF2=2a>2c; ③ e= ④長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c; a2=b2+c2 ;

      2、雙曲線(xiàn):①方程 (a,b>0) 注意還有一個(gè);②定義: PF1-PF2=2a<2c; ③e= ;④實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,焦距為2c;漸進(jìn)線(xiàn) 或 c2=a2+b2

      3、拋物線(xiàn) :①方程y2=2px注意還有三個(gè),能區(qū)別開(kāi)口方向; ②定義:PF=d焦點(diǎn)F( ,0),準(zhǔn)線(xiàn)x=- ;③焦半徑 ; 焦點(diǎn)弦=x1+x2+p;

      4、直線(xiàn)被圓錐曲線(xiàn)截得的弦長(zhǎng)公式:

      5、注意解析幾何與向量結(jié)合問(wèn)題:1、 , . (1) ;(2) .

      2、數(shù)量積的定義:已知兩個(gè)非零向量a和b,它們的夾角為θ,則數(shù)量abcosθ叫做a與b的數(shù)量積,記作a·b,即

      3、模的計(jì)算:a= . 算??梢韵人阆蛄康钠椒?/p>

      4、向量的運(yùn)算過(guò)程中完全平方公式等照樣適用:

      三、直線(xiàn)、平面、簡(jiǎn)單幾何體:

      1、學(xué)會(huì)三視圖的分析:

      2、斜二測(cè)畫(huà)法應(yīng)注意的地方:

      (1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀(guān)圖時(shí),把它畫(huà)成對(duì)應(yīng)軸 o'x'、o'y'、使∠x(chóng)'o'y'=45°(或135° ); (2)平行于x軸的線(xiàn)段長(zhǎng)不變,平行于y軸的線(xiàn)段長(zhǎng)減半.(3)直觀(guān)圖中的45度原圖中就是90度,直觀(guān)圖中的90度原圖一定不是90度.

      3、表(側(cè))面積與體積公式:

      ⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)= ;③體積:V=S底h

      ⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)= ;③體積:V= S底h:

      ⑶臺(tái)體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

      ⑷球體:①表面積:S= ;②體積:V=

      4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)

      (1)直線(xiàn)與平面平行:①線(xiàn)線(xiàn)平行線(xiàn)面平行;②面面平行 線(xiàn)面平行。

      (2)平面與平面平行:①線(xiàn)面平行面面平行。

      (3)垂直問(wèn)題:線(xiàn)線(xiàn)垂直 線(xiàn)面垂直 面面垂直。核心是線(xiàn)面垂直:垂直平面內(nèi)的兩條相交直線(xiàn)

      5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

      ⑴異面直線(xiàn)所成角的求法:平移法:平移直線(xiàn),構(gòu)造三角形;

      ⑵直線(xiàn)與平面所成的角:直線(xiàn)與射影所成的角

      四、導(dǎo)數(shù):

      1、導(dǎo)數(shù)的定義: 在點(diǎn) 處的導(dǎo)數(shù)記作 .

      2. 導(dǎo)數(shù)的幾何物理意義:曲線(xiàn) 在點(diǎn) 處切線(xiàn)的斜率

      ①k=f/(x0)表示過(guò)曲線(xiàn)y=f(x)上P(x0,f(x0))切線(xiàn)斜率。V=s/(t) 表示即時(shí)速度。a=v/(t) 表示加速度。

      3.常見(jiàn)函數(shù)的導(dǎo)數(shù)公式: ① ;② ;③ ;

      4.導(dǎo)數(shù)的四則運(yùn)算法則:

      5.導(dǎo)數(shù)的應(yīng)用:

      (1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù) 在某個(gè)區(qū)間內(nèi)可導(dǎo),如果 ,那么 為增函數(shù);如果 ,那么為減函數(shù);

      注意:如果已知 為減函數(shù)求字母取值范圍,那么不等式 恒成立。

      (2)求極值的步驟:

      ①求導(dǎo)數(shù) ;

      ②求方程 的根;

      ③列表:檢驗(yàn) 在方程 根的左右的符號(hào),如果左正右負(fù),那么函數(shù) 在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù) 在這個(gè)根處取得極小值;

      (3)求可導(dǎo)函數(shù)最大值與最小值的步驟:

      ?求 的根; ?把根與區(qū)間端點(diǎn)函數(shù)值比較,最大的為最大值,最小的是最小值。

      五、常用邏輯用語(yǔ):

      1、四種命題:

      ⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若 p則 q;⑷逆否命題:若 q則 p

      注:

      1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉(zhuǎn)化。

      2、注意命題的否定與否命題的區(qū)別:命題否定形式是 ;否命題是 .命題“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.

      3、邏輯聯(lián)結(jié)詞:

      ⑴且(and) :命題形式 p q; p q p q p q p

      ⑵或(or):命題形式 p q; 真 真 真 真 假

      ⑶非(not):命題形式 p . 真 假 假 真 假

      假 真 假 真 真

      假 假 假 假 真

      “或命題”的真假特點(diǎn)是“一真即真,要假全假”;

      “且命題”的真假特點(diǎn)是“一假即假,要真全真”;

      “非命題”的真假特點(diǎn)是“一真一假”

      4、充要條件

      由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。

      5、全稱(chēng)命題與特稱(chēng)命題:

      短語(yǔ)“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱(chēng)量詞,并用符號(hào)表示。含有全體量詞的命題,叫做全稱(chēng)命題。

      短語(yǔ)“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號(hào) 表示,含有存在量詞的命題,叫做存在性命題。

      全稱(chēng)命題p: ; 全稱(chēng)命題p的否定 p:。

      特稱(chēng)命題p: ; 特稱(chēng)命題p的否定 p:

      高二數(shù)學(xué)知識(shí)點(diǎn)及公式總結(jié)【篇2】

      1、向量的加法

      向量的加法滿(mǎn)足平行四邊形法則和三角形法則。

      AB+BC=AC。

      a+b=(x+x',y+y')。

      a+0=0+a=a。

      向量加法的運(yùn)算律:

      交換律:a+b=b+a;

      結(jié)合律:(a+b)+c=a+(b+c)。

      2、向量的減法

      如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0

      AB-AC=CB. 即“共同起點(diǎn),指向被減”

      a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

      3、數(shù)乘向量

      實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

      當(dāng)λ>0時(shí),λa與a同方向;

      當(dāng)λ<0時(shí),λa與a反方向;

      當(dāng)λ=0時(shí),λa=0,方向任意。

      當(dāng)a=0時(shí),對(duì)于任意實(shí)數(shù)λ,都有λa=0。

      注:按定義知,如果λa=0,那么λ=0或a=0。

      實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線(xiàn)段伸長(zhǎng)或壓縮。

      當(dāng)∣λ∣>1時(shí),表示向量a的有向線(xiàn)段在原方向(λ>0)或反方向(λ<0)上伸長(zhǎng)為原來(lái)的∣λ∣倍;

      當(dāng)∣λ∣<1時(shí),表示向量a的有向線(xiàn)段在原方向(λ>0)或反方向(λ<0)上縮短為原來(lái)的∣λ∣倍。

      數(shù)與向量的乘法滿(mǎn)足下面的運(yùn)算律

      結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。

      向量對(duì)于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.

      數(shù)對(duì)于向量的分配律(第二分配律):λ(a+b)=λa+λb.

      數(shù)乘向量的消去律:① 如果實(shí)數(shù)λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

      4、向量的的數(shù)量積

      定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

      定義:兩個(gè)向量的數(shù)量積(內(nèi)積、點(diǎn)積)是一個(gè)數(shù)量,記作a·b。若a、b不共線(xiàn),則a·b=|a|·|b|·cos〈a,b〉;若a、b共線(xiàn),則a·b=+-∣a∣∣b∣。

      向量的數(shù)量積的坐標(biāo)表示:a·b=x·x'+y·y'。

      向量的數(shù)量積的運(yùn)算率

      a·b=b·a(交換率);

      (a+b)·c=a·c+b·c(分配率);

      向量的數(shù)量積的性質(zhì)

      a·a=|a|的平方。

      a⊥b 〈=〉a·b=0。

      |a·b|≤|a|·|b|。

      高二數(shù)學(xué)知識(shí)點(diǎn)及公式總結(jié)【篇3】

      分層抽樣

      先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類(lèi)型或?qū)哟危缓笤僭诟鱾€(gè)類(lèi)型或?qū)哟沃胁捎煤?jiǎn)單隨機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構(gòu)成總體的樣本。

      兩種方法

      1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

      2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

      2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。

      分層標(biāo)準(zhǔn)

      (1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。

      (2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。

      (3)以那些有明顯分層區(qū)分的變量作為分層變量。

      分層的比例問(wèn)題

      (1)按比例分層抽樣:根據(jù)各種類(lèi)型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來(lái)抽取子樣本的方法。

      (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì)非常少,此時(shí)采用該方法,主要是便于對(duì)不同層次的子總體進(jìn)行專(zhuān)門(mén)研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對(duì)各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。

      高二數(shù)學(xué)知識(shí)點(diǎn)及公式總結(jié)【篇4】

      考點(diǎn)一:向量的概念、向量的基本定理

      【內(nèi)容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線(xiàn)向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。

      注意對(duì)向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無(wú)法比較大小,它們的模可比較大小。

      考點(diǎn)二:向量的運(yùn)算

      【內(nèi)容解讀】向量的運(yùn)算要求掌握向量的加減法運(yùn)算,會(huì)用平行四邊形法則、三角形法則進(jìn)行向量的加減運(yùn)算;掌握實(shí)數(shù)與向量的積運(yùn)算,理解兩個(gè)向量共線(xiàn)的含義,會(huì)判斷兩個(gè)向量的平行關(guān)系;掌握向量的數(shù)量積的運(yùn)算,體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量積的運(yùn)算,能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用向量積判斷兩個(gè)平面向量的垂直關(guān)系。

      【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運(yùn)算,有時(shí)也會(huì)與其它內(nèi)容相結(jié)合。

      考點(diǎn)三:定比分點(diǎn)

      【內(nèi)容解讀】掌握線(xiàn)段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能熟練應(yīng)用,求點(diǎn)分有向線(xiàn)段所成比時(shí),可借助圖形來(lái)幫助理解。

      【命題規(guī)律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會(huì)與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。

      考點(diǎn)四:向量與三角函數(shù)的綜合問(wèn)題

      【內(nèi)容解讀】向量與三角函數(shù)的綜合問(wèn)題是高考經(jīng)常出現(xiàn)的問(wèn)題,考查了向量的知識(shí),三角函數(shù)的知識(shí),達(dá)到了高考中試題的覆蓋面的要求。

      【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運(yùn)算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問(wèn)題,屬中檔偏易題。

      考點(diǎn)五:平面向量與函數(shù)問(wèn)題的交匯

      【內(nèi)容解讀】平面向量與函數(shù)交匯的問(wèn)題,主要是向量與二次函數(shù)結(jié)合的問(wèn)題為主,要注意自變量的取值范圍。

      【命題規(guī)律】命題多以解答題為主,屬中檔題。

      考點(diǎn)六:平面向量在平面幾何中的應(yīng)用

      【內(nèi)容解讀】向量的坐標(biāo)表示實(shí)際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運(yùn)算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問(wèn)題中較難解決的問(wèn)題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運(yùn)算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問(wèn)題轉(zhuǎn)化為相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問(wèn)題得到解決.

      【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。

      高二數(shù)學(xué)知識(shí)點(diǎn)及公式總結(jié)【篇5】

      1、圓的定義

      平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。

      2、圓的方程

      (x-a)^2+(y-b)^2=r^2

      (1)標(biāo)準(zhǔn)方程,圓心(a,b),半徑為r;

      (2)求圓方程的方法:

      一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

      需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

      另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。

      3、直線(xiàn)與圓的位置關(guān)系

      直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況:

      (1)設(shè)直線(xiàn),圓,圓心到l的距離為,則有;;

      (2)過(guò)圓外一點(diǎn)的切線(xiàn):①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線(xiàn)距離=半徑,求解k,得到方程【一定兩解】

      (3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

      練習(xí)題:

      2.若圓(x-a)2+(y-b)2=r2過(guò)原點(diǎn),則()

      A.a2-b2=0B.a2+b2=r2

      C.a2+b2+r2=0D.a=0,b=0

      【解析】選B.因?yàn)閳A過(guò)原點(diǎn),所以(0,0)滿(mǎn)足方程,

      即(0-a)2+(0-b)2=r2,

      所以a2+b2=r2.

      高二數(shù)學(xué)知識(shí)點(diǎn)及公式總結(jié)【篇6】

      空間中的垂直問(wèn)題

      (1)線(xiàn)線(xiàn)、面面、線(xiàn)面垂直的定義

      ①兩條異面直線(xiàn)的垂直:如果兩條異面直線(xiàn)所成的角是直角,就說(shuō)這兩條異面直線(xiàn)互相垂直。

      ②線(xiàn)面垂直:如果一條直線(xiàn)和一個(gè)平面內(nèi)的任何一條直線(xiàn)垂直,就說(shuō)這條直線(xiàn)和這個(gè)平面垂直。

      ③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。

      (2)垂直關(guān)系的判定和性質(zhì)定理

      ①線(xiàn)面垂直判定定理和性質(zhì)定理

      判定定理:如果一條直線(xiàn)和一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直這個(gè)平面。

      性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。

      ②面面垂直的判定定理和性質(zhì)定理

      判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直。

      性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面。

      高二數(shù)學(xué)知識(shí)點(diǎn)及公式總結(jié)【篇7】

      1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征

      1.2空間幾何體的三視圖和直觀(guān)圖

      11三視圖:

      正視圖:從前往后

      側(cè)視圖:從左往右

      俯視圖:從上往下

      22畫(huà)三視圖的原則:

      長(zhǎng)對(duì)齊、高對(duì)齊、寬相等

      33直觀(guān)圖:斜二測(cè)畫(huà)法

      44斜二測(cè)畫(huà)法的步驟:

      (1).平行于坐標(biāo)軸的線(xiàn)依然平行于坐標(biāo)軸;

      (2).平行于y軸的線(xiàn)長(zhǎng)度變半,平行于x,z軸的線(xiàn)長(zhǎng)度不變;

      (3).畫(huà)法要寫(xiě)好。

      5用斜二測(cè)畫(huà)法畫(huà)出長(zhǎng)方體的步驟:(1)畫(huà)軸(2)畫(huà)底面(3)畫(huà)側(cè)棱(4)成圖

      1.3空間幾何體的表面積與體積

      (一)空間幾何體的表面積

      1棱柱、棱錐的表面積:各個(gè)面面積之和

      2圓柱的表面積3圓錐的表面積

      4圓臺(tái)的表面積

      5球的表面積

      (二)空間幾何體的體積

      1柱體的體積

      2錐體的體積

      3臺(tái)體的體積

      4球體的體積

      高二數(shù)學(xué)必修二知識(shí)點(diǎn):直線(xiàn)與平面的位置關(guān)系

      2.1空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系

      2.1.1

      1平面含義:平面是無(wú)限延展的

      2平面的畫(huà)法及表示

      (1)平面的畫(huà)法:水平放置的平面通常畫(huà)成一個(gè)平行四邊形,銳角畫(huà)成450,且橫邊畫(huà)成鄰邊的2倍長(zhǎng)(如圖)

      (2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對(duì)的兩個(gè)頂點(diǎn)的大寫(xiě)字母來(lái)表示,如平面AC、平面ABCD等。

      3三個(gè)公理:

      (1)公理1:如果一條直線(xiàn)上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線(xiàn)在此平面內(nèi)

      符號(hào)表示為

      A∈L

      B∈L=>Lα

      A∈α

      B∈α

      公理1作用:判斷直線(xiàn)是否在平面內(nèi)

      (2)公理2:過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面。

      符號(hào)表示為:A、B、C三點(diǎn)不共線(xiàn)=>有且只有一個(gè)平面α,

      使A∈α、B∈α、C∈α。

      公理2作用:確定一個(gè)平面的依據(jù)。

      (3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)。

      符號(hào)表示為:P∈α∩β=>α∩β=L,且P∈L

      公理3作用:判定兩個(gè)平面是否相交的依據(jù)

      2.1.2空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系

      1空間的兩條直線(xiàn)有如下三種關(guān)系:

      共面直線(xiàn)

      相交直線(xiàn):同一平面內(nèi),有且只有一個(gè)公共點(diǎn);

      平行直線(xiàn):同一平面內(nèi),沒(méi)有公共點(diǎn);

      異面直線(xiàn):不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn)。

      2公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行。

      符號(hào)表示為:設(shè)a、b、c是三條直線(xiàn)

      a∥b

      c∥b

      強(qiáng)調(diào):公理4實(shí)質(zhì)上是說(shuō)平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。

      公理4作用:判斷空間兩條直線(xiàn)平行的依據(jù)。

      3等角定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)

      4注意點(diǎn):

      ①a與b所成的角的大小只由a、b的相互位置來(lái)確定,與O的選擇無(wú)關(guān),為了簡(jiǎn)便,點(diǎn)O一般取在兩直線(xiàn)中的一條上;

      ②兩條異面直線(xiàn)所成的角θ∈(0,);

      ③當(dāng)兩條異面直線(xiàn)所成的角是直角時(shí),我們就說(shuō)這兩條異面直線(xiàn)互相垂直,記作a⊥b;

      ④兩條直線(xiàn)互相垂直,有共面垂直與異面垂直兩種情形;

      ⑤計(jì)算中,通常把兩條異面直線(xiàn)所成的角轉(zhuǎn)化為兩條相交直線(xiàn)所成的角。

      2.1.3—2.1.4空間中直線(xiàn)與平面、平面與平面之間的位置關(guān)系

      1、直線(xiàn)與平面有三種位置關(guān)系:

      (1)直線(xiàn)在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)

      (2)直線(xiàn)與平面相交——有且只有一個(gè)公共點(diǎn)

      (3)直線(xiàn)在平面平行——沒(méi)有公共點(diǎn)

      指出:直線(xiàn)與平面相交或平行的情況統(tǒng)稱(chēng)為直線(xiàn)在平面外,可用aα來(lái)表示

      aαa∩α=Aa∥α

      2.2.直線(xiàn)、平面平行的判定及其性質(zhì)

      2.2.1直線(xiàn)與平面平行的判定

      1、直線(xiàn)與平面平行的判定定理:平面外一條直線(xiàn)與此平面內(nèi)的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行。

      簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行。

      符號(hào)表示:

      bβ=>a∥α

      a∥b

      2.2.2平面與平面平行的判定

      1、兩個(gè)平面平行的`判定定理:一個(gè)平面內(nèi)的兩條交直線(xiàn)與另一個(gè)平面平行,則這兩個(gè)平面平行。

      符號(hào)表示:

      a∩b=Pβ∥α

      a∥α

      b∥α

      2、判斷兩平面平行的方法有三種:

      (1)用定義;

      (2)判定定理;

      (3)垂直于同一條直線(xiàn)的兩個(gè)平面平行。

      2.2.3—2.2.4直線(xiàn)與平面、平面與平面平行的性質(zhì)

      1、定理:一條直線(xiàn)與一個(gè)平面平行,則過(guò)這條直線(xiàn)的任一平面與此平面的交線(xiàn)與該直線(xiàn)平行。

      簡(jiǎn)記為:線(xiàn)面平行則線(xiàn)線(xiàn)平行。

      符號(hào)表示:

      a∥α

      aβa∥b

      α∩β=b

      作用:利用該定理可解決直線(xiàn)間的平行問(wèn)題。

      2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。

      符號(hào)表示:

      α∥β

      α∩γ=aa∥b

      β∩γ=b

      作用:可以由平面與平面平行得出直線(xiàn)與直線(xiàn)平行

      2.3直線(xiàn)、平面垂直的判定及其性質(zhì)

      2.3.1直線(xiàn)與平面垂直的判定

      1、定義

      如果直線(xiàn)L與平面α內(nèi)的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)L與平面α互相垂直,記作L⊥α,直線(xiàn)L叫做平面α的垂線(xiàn),平面α叫做直線(xiàn)L的垂面。直線(xiàn)與平面垂直時(shí),它們公共點(diǎn)P叫做垂足。

      2、判定定理:一條直線(xiàn)與一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直。

      注意點(diǎn):a)定理中的“兩條相交直線(xiàn)”這一條件不可忽視;

      b)定理體現(xiàn)了“直線(xiàn)與平面垂直”與“直線(xiàn)與直線(xiàn)垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。

      2.3.2平面與平面垂直的判定

      1、二面角的概念:表示從空間一直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形

      2、二面角的記法:二面角α-l-β或α-AB-β

      3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直。

      2.3.3—2.3.4直線(xiàn)與平面、平面與平面垂直的性質(zhì)

      1、定理:垂直于同一個(gè)平面的兩條直線(xiàn)平行。

      2性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直。

      1972115