如何培養(yǎng)數學空間思維
愛因斯坦有句名言:“興趣是最好的老師”,學生有了興趣,學習上會變得主動,在數學教學中,根據課堂實際情況,學生的心理狀態(tài)和教學內容,適當設疑,對激發(fā)學生的學習興趣和學好數學有很大的作用。下面小編給大家整理了關于如何培養(yǎng)數學空間思維,希望對你有幫助!
1如何培養(yǎng)數學空間思維
情景教學法
要培養(yǎng)學生創(chuàng)新思維,老師首先要擺正自己在教學中的位置,在日常數學教學中,充分發(fā)揮主導作用,引導學生激發(fā)數學學習的主觀能動性,讓他們主動參與到教學中來,去探索、去鉆研,才能轉化為自己的知識,讓學生充分發(fā)揮自己的見解,并進行大膽求證,才能培養(yǎng)創(chuàng)新思維。在教學中,老師可以采用情景教學法,將學生的注意力吸引到課堂教學之中,把數學理論內容巧妙地轉化為數學問題思維情境,激發(fā)學生勇于探索問題、分析問題、解決問題和延伸問題的能力,從而更好地培養(yǎng)學生的創(chuàng)造性思維能力。
例如,在學習新人教版九年級數學上冊“中心對稱”一課中,為了讓學生充分理解兩個圖形關于一點對稱的概念,并掌握它們的性質,老師通過創(chuàng)設情境,結合課本62頁的圖形,讓學生先觀察,再回答問題:把其中一個圖案繞點O旋轉180°,你有什么發(fā)現(xiàn)?先讓學生從旋轉變換的角度分別觀察兩個圖形之間的關系,從而引入中心對稱的定義。讓學生體會到知識間的內在聯(lián)系,中心對稱實際上是旋轉變換的一種特殊形式(中心對稱中要求旋轉角必須為180度),滲透了從一般到特殊的數學思想方法。接著,對“軸對稱”和“中心對稱”的概念進行比較,讓學生自主探究軸對稱和中心對稱的區(qū)別。引導學生經歷“觀察、猜想、歸納、驗證”的數學思想,提高了學生分析問題、解決問題的能力,有效地培養(yǎng)了學生的創(chuàng)造性思維。
質疑教學法
培養(yǎng)學生的創(chuàng)造性思維,需要老師在初中數學教學中,采用發(fā)散式思維教學模式,使學生數學思想不受定勢或模式的束縛,充分發(fā)揮學生的智力因素,引導學生發(fā)展創(chuàng)造性思維能力,采取多種教學思路,調動學生思維的活躍性和多向性。在初中數學教學中,老師可以采用質疑式教學法,在課堂上鼓勵學生大膽質疑,激發(fā)學生探求真理的熱情。
例如在學習初中數學八年級下冊人教版“方差”一課時,老師在對方差的概念和產生形成過程進行講授完畢后,老師可以問學生:在學習了方差后,大家對方差有了初步的認識,那么還有什么問題要問嗎?最好能問倒其他同學哦?!边@個問題一提出,立刻就激發(fā)了學生的學習熱情。他們爭先恐后地提出了問題,如“方差的具體應用是什么?”“方差和標準差的區(qū)別是什么?”,等等。問題提出后有的同學立即給予回答。由于學生的勇于質疑,使許多疑問統(tǒng)統(tǒng)暴露出來,并得到了解決,學生有效地掌握了方差這一知識點。
2數學思維訓練技巧
善于運用發(fā)現(xiàn)法,啟發(fā)學生的思維
發(fā)現(xiàn)法是一種啟發(fā)式的教學方法,它的理論產生于二十世紀五十年代,形成于六、七十年代,是目前新課程改革下,廣大教師廣泛應用的教學方法。要畫圓了,老師不講畫法,讓學生先去畫,滿足他們操作圓規(guī)的好奇心,讓學生自己去發(fā)現(xiàn)畫圓的方法和步驟。整節(jié)課,學生的思維都處于興奮狀態(tài)之中,人人有動手操作、用眼觀察、動口說理、動腦思維的機會,學生自己觀察發(fā)現(xiàn)問題,積極探索得出結論,教學效果好。
構建平等和諧的教學環(huán)節(jié),啟迪學生的思維
蘇霍姆林斯基說過:“成功的歡樂是一種巨大的情緒力量?!边@啟示我們教師在教學中必須放下師道尊嚴的架子,到學生中去,用對學生信任、充滿激情的對話和語言,創(chuàng)設一種平等、和諧的教學環(huán)境,讓學生在愉快、寬松自由的氛圍中學習,讓每個學生都能抬起頭來體驗這種學習中的成功。例如,在課堂上我們可以多一些這樣的話語,“你的回答很有創(chuàng)意!”“你真了不起,發(fā)現(xiàn)了小秘密!”……這些充滿激情、充滿鼓勵的評價,讓孩子們放松了緊張、焦慮的情緒,保護了學生學習的積極性,使他們覺得學習數學是快樂的,逐漸地喜愛上數學,從而最大限度發(fā)揮學生的潛能,促進學生積極主動的進行思維活動。
重視直觀教學,培養(yǎng)學生的思維
培養(yǎng)學生的邏輯思維能力,首先要根據他們的思維能力特點,憑借實物、模型、操作和語言的直觀,在引導學生對各種數學現(xiàn)象進行具體形象感知的基礎上,進行理性的抽象概括、推理判斷等。學具操作是一種外部的物質化活動,其特殊性在于操作活動能引起和促進學生借助于手的活動能夠實現(xiàn)和反映其內部的思維活動,在推進學生思維內化的過程中起著十分重要的作用,因此,教師必須重視直觀的教學。“操作是智力的源泉、思維的起點”,啟迪學生積極思維,操作是首要的第一步。通過多種感官去感知事物,去獲取感性知識,去比較、分析、綜合、抽象出事物的本質,得出概念、法則,找出解決問題的方法。
3數學思維訓練技巧
.運用比較辨別,啟迪學生思維想象
如在教學了數的整除的知識后,我出示了這樣一道例題:“一個大于10的數,被6除余4,被8除余2,被9除余1,這個數最小是幾?”應該說這道題是有一定的難度的,學生求解會感到無從下手,這時,我出示了這樣一題比較題:“一個數被6除余10,被8除余10,被9除余10,這個數最小是幾?”這道題學生很快能求出答案:這個數即是6、8和9的最小公倍數多10,6、8和9的最小公倍數為72,因此這個數為:72+10=82;
然后我引導學生將上面一道例題與這道比較題進行比較和思考,學生很快知道,上道題只要假設被6除少商1余數即為10,被8除少商1余數也為10、被9除時少商1余數也為10,因此可迅速求得這個數只要減去10,就同時能被6、8和9整除,而6、8和9的最小公倍數為72,因此這個數為:72+10=82 。這樣通過讓學生展開聯(lián)想和比較,不但可以提高學生的想象能力,同時也能提高學生的創(chuàng)新思維能力。
通過分析歸納,培養(yǎng)學生創(chuàng)新思維
又如在教學平面圖形的面積計算公式后,我要求學生歸納出一個能概括各個平面圖形面積計算的公式,我讓學生進行討論,經過討論,學生們歸納出,在小學階段學過的面積公式都可以用梯形的面積計算公式來進行概括,因為梯形的面積計算公式是:(上底 +下底)×高÷2 。而長方形、正方形、平行四邊形的上底和下底相等,即可將這公式變成:底(長、邊長)×高(寬、邊長)×2÷2 = 底(長、邊長)×高(寬、邊長);
又因為圓面積公式是根據長方形的面積公式推導出來的,因此,梯形的面積公式對圓也同樣適用;當梯形的上底是零時,即梯形成了一個三角形,這時梯形的面積公式成了:底×高÷2。這即成了三角形的面積公式。這樣,不僅使學生能熟練掌握已學過的平面圖形的面積公式,同時,也培養(yǎng)和提高了學生的創(chuàng)新能力。
4數學思維訓練技巧
加強練習點撥升華,深入拓展學生思維
以學生自主探究和教師激勵評價為基礎,教師要繼續(xù)引導學生以所學知識解答實際問題,科學設計練習題目,實現(xiàn)新知和技能、技巧的進一步鞏固,把學生引入有效的趣味化問題情境中,讓學生有效參與學習和探索知識的內在規(guī)律,拓展個性化思維,培養(yǎng)和提高學生思維能力。以“兩位數乘兩位數”為例,在學生完成自我總結和教師做出評價后,設計如下練習:(1)同桌相互出幾個兩位數乘兩位數的練習題目,用豎式計算出結果后相互批改。
(2)計算21×48 63×24 84×12 42×36,得出結果后你會發(fā)現(xiàn)什么規(guī)律?你還能舉出存在類似規(guī)律的算式嗎?除了鞏固學生的筆算能力外,再特意安排幾組有規(guī)律的算式讓學生認真觀察、發(fā)現(xiàn)和探究,學生覺得有無窮的樂趣,進而更加積極主動地展開深入探究,最終發(fā)現(xiàn)了“回文”算式,每組兩個算式相等,如:63×24=42×36 84×12=21×48。學生找尋具有類似規(guī)律的算式,開放性較大,對學生創(chuàng)造能力的培養(yǎng)有很好的作用。在做鞏固練習時,很容易發(fā)生一些意外情況,如果不能及時解決這些問題,就會對后面的探究學習產生阻礙。所以,教師要扮演好引導者的角色,而不能做旁觀者。在課堂上,教師要注意觀察學生,及時做出合理引導,適時引導、點撥學生的自主探究與合作學習,為學生撥開云霧見太陽,把自主構建與價值引導和諧統(tǒng)一起來。
開展語言表達訓練,發(fā)展語言思維能力
思維是語言的內容,而語言是思維的外在表現(xiàn)形式。加強學生語言訓練,不僅能提高學生的口頭表達能力,而且有利于促進學生的思維能力的發(fā)展。教師在引導學生做一般應用題時,可加強學生對自己解題步驟和思路的解說訓練,先讓學生審題,指出它的已知條件和所求,并分析題中的數量關系,有理有據地確定解題思路,然后要求學生用清楚、準確和有條理的語言把它表達出來。如 “學校服裝加工廠計劃做670套衣服,已經做了4.5天,平均每天做 82套,剩下的要在3.5 天里做完,平均每天做多少套?”這道應用題,可以先讓學生審題,指出已知條件和所求。學生經過分析后指出:“670套”是總的工作量,“4.5天”是已經完成的工作時間,“82 套”是開始工作時的工作效率?!?.5天”是剩下的工作量時間,這些都是本題的已知條件。
而本題所求,即是剩下的工作所使用的工作效率。接著要求學生分析題中的數量關系,確定解題思路,即第一步,求已經完成的工作量,根據工作總量等于工作效率乘以工作時間,所以列式是82×4.5=369(套);第二步,是求剩下的工作量,用總的工作量減去已完成的工作量,列式是670減去已經完成的工作量,求出的剩余的工作量;第三步是求平均每天做多少套,即剩余的工作量所用的工作效率,列式是:剩下的工作總量除以3.5天,求出的結果就是剩下的平均每天做多少套。最后要求學生把解這道應用題的整個步驟和思路用清楚、準確的語言有條有理地口述出來。這就可以把語言的訓練與促進學生的思維能力的發(fā)展巧妙地結合起來。加強語言訓練,還可以讓學生說他人解題思路、解說自己學習方法的訓練,讓學生在發(fā)展語言的同時,思維能力也得到有效發(fā)展。
如何培養(yǎng)數學空間思維相關文章: