亚洲高清vr播放在线观看,欧美亚洲精品免费,欧美日韩天堂在线视频,午夜福利小视频

      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初二學(xué)習(xí)方法 > 八年級(jí)數(shù)學(xué) > 湘教版數(shù)學(xué)八年級(jí)下冊(cè)期中試卷

      湘教版數(shù)學(xué)八年級(jí)下冊(cè)期中試卷

      時(shí)間: 礎(chǔ)鴻1124 分享

      湘教版數(shù)學(xué)八年級(jí)下冊(cè)期中試卷

        人有時(shí)是要勉強(qiáng)自己的。我們需要一種來(lái)自自身的強(qiáng)有力的能量推動(dòng)自己闖出一個(gè)新的境界來(lái)。 下面由學(xué)習(xí)啦小編為你整理的湘教版數(shù)學(xué)八年級(jí)下冊(cè)期中試卷,希望對(duì)大家有幫助!

        湘教版數(shù)學(xué)八年級(jí)下冊(cè)期中試卷

        一、精心選一選(本題有12小題,每題3分,共36分)

        1. 下列計(jì)算錯(cuò)誤的是( )

        A. B. C. D.

        2. 下列各式中最簡(jiǎn)二次根式為()

        A. B. C. D.

        3. 下列各組長(zhǎng)度的線段能組成直角三角形的是( )

        A.a=2,b=3,c=4 B.a=4,b=4,c=5

        C.a=5,b=6,c=7 D.a=5,b=12,c=13

        4.直角三角形一條直角邊長(zhǎng)為8 cm,它所對(duì)的角為30°,則斜邊為( )

        A. 16 cm B. 4cm C. 12cm D. 8 cm

        5. 如圖所示,在數(shù)軸上點(diǎn)A所表示的數(shù)為a,則a的值為()

        A. ﹣1﹣ B. 1﹣ C. ﹣ D. ﹣1+

        6.一個(gè)四邊形的三個(gè)相鄰內(nèi)角度數(shù)依次如下,那么其中是平行四邊形的是()

        A. 88°,108°,88° B. 88°,104°,108°

        C. 88°,92°,92° D. 88°,92°,88°

        7.下列命題中是真命題的是( )

        A.兩條對(duì)角線相等的平行四邊形是矩形

        B.一組對(duì)邊平行一組對(duì)邊相等的四邊形是平行四邊形

        C.兩組相等的平行四邊形是菱形

        D.對(duì)角線互相垂直且相等的四邊形是正方形

        8.已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是(  )

        A.當(dāng)AB=BC時(shí),它是菱形 B.當(dāng)AC⊥BD時(shí),它是菱形

        C.當(dāng)∠ABC=90º時(shí),它是矩形 D.當(dāng)AC=BD時(shí),它是正方形

        9.右圖圖像反應(yīng)的過(guò)程是;小明從家跑到體育館,在那里鍛煉了一陣后又走到新華書店去買書, 然后散步走回家,其中 表示時(shí)間(分鐘), 表示小明離家的距離(千米) ,那么小明在體育館鍛煉和在新華書店買書共用去的時(shí)間是_____________分鐘。

        A.10 B.20 C.50 D.80

        10.下列各曲線中不能表示 是 的函數(shù)是( ).

        11、如圖所示的圖形中,所有的四邊形都是正方形,

        所有的三角形都是直角三角形,其中最大的正方形

        的邊長(zhǎng)為7cm,則所有正方形的面積的和是( )

        A、28 B、49 C、98 D、147

        12. 如圖,在矩形ABCD中,AB=3,AD=4,點(diǎn)P在AD上,PE⊥AC于E,PF⊥BD于F,則PE+PF等于()

        A. B. C. D.

        二、認(rèn)真填一填,把答案寫在橫線上(本題有6小題,每題3分,共18分)

        13.函數(shù)y= 中,自變量x的取值范圍是__________計(jì)算 的結(jié)果是 .

        化簡(jiǎn) 的結(jié)果是 .

        .

        14. 直角三角形兩條直角邊的長(zhǎng)分別為12和5,則斜邊上的中線等于 .

        15. 如圖,△ABC中,D、E分別為AB、AC邊上的中點(diǎn),若DE=6,則BC=

        16、 如圖,一棵大樹在離地3米處折斷,樹的頂端落在離樹桿底部4米處,那么這棵樹折斷之前的高度是 米.

        17.根據(jù)如圖的程序,計(jì)算當(dāng)輸入 時(shí),輸出的結(jié)果 .

        18.如圖,OP=1,過(guò)P作PP1⊥OP且PP1=1,得OP1= ;再過(guò)P1作P1P2⊥OP1且P1P2=1,得OP2= ;又過(guò)P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法繼續(xù)作下去,得 = .

        三、解答題(19,20題每題6分,21,22題每題8分,23,24每題9分)

        19.計(jì)算:

        (1)4 + ﹣ (2) .

        (3)

        20.如圖,矩形ABCD的兩條對(duì)角線AC、BD相交于點(diǎn)O,∠AOD=120°,AB=2.求矩形邊BC的長(zhǎng)?

        21.如圖,□ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E、F是AC上的兩點(diǎn),并且AE=CF,求證:四邊形BFDE是平行四邊形.

        22.如圖,將長(zhǎng)為2.5米長(zhǎng)的梯子AB斜靠在墻上,BC長(zhǎng)0.7米。

        (1)求梯子上端到墻的底端E的距離(即AE的長(zhǎng));

        (2)如果梯子的頂端A沿墻下滑0.4米(即AA′=0.4米),則梯腳B將外移(即BB′長(zhǎng))多少米?

        23如圖,已知菱形ABCD的對(duì)角線相交于點(diǎn)O,延長(zhǎng)AB至點(diǎn)E,使BE=AB,連接CE.

        (1)求證:BD=EC;

        (2)若∠E=50°,求∠BAO的大小.

        24.已知:如圖,在□ABCD中,E、F分別為邊AB、CD的中點(diǎn), BD是對(duì)角線,AG∥DB交CB的延長(zhǎng)線于G.

        (1)求證:△ADE≌△CBF;

        (2)若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

        四.思考題(15,26題每題10分)

        25.觀察下列各式及其驗(yàn)證過(guò)程:

        驗(yàn)證: = ;

        驗(yàn)證: = = = ;

        驗(yàn)證: = ;

        驗(yàn)證: = = = .

        (1)按照上述兩個(gè)等式及其驗(yàn)證過(guò)程的基本思路,猜想4 的變形結(jié)果并進(jìn)行驗(yàn)證;

        (2)針對(duì)上述各式反映的規(guī)律,寫出用n(n為任意自然數(shù),且n≥2)表示的等式,并給出證明.

        26.如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AD方向向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿著CB方向向點(diǎn)B以3cm/s的速度運(yùn)動(dòng).點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).

        (1)經(jīng)過(guò)多長(zhǎng)時(shí)間,四邊形PQCD是平行四邊形?

        (2)經(jīng)過(guò)多長(zhǎng)時(shí)間,四邊形PQBA是矩形?

        (3)經(jīng)過(guò)多長(zhǎng)時(shí)間,當(dāng)PQ不平行于CD時(shí),有PQ=CD.

        湘教版數(shù)學(xué)八年級(jí)下冊(cè)期中試卷答案

        1.B;2.D;3.D;4.A,5.A;6.D;7.A;8.D;9.C;10.B;11.D;12.B;13. ≠2、2、

        14.6.5;15.12;16.8;17.2;18.

        19.(1) (2) (3)-7

        20.

        ∵∠AOD=120°,

        ∴∠AOB=180°-120°=60°,

        ∵四邊形ABCD是矩形,

        ∴∠ABC=90°,AC=BD,OA=OC= AC,OB=OD= BD,

        ∴OA=OB,

        ∵∠AOB=60°,

        ∴△AOB是等邊三角形,

        ∵AB=2.5cm,

        ∴OA=OB=AB=2,

        ∴AC=2AO=4,BD=AC=4.

        在直角△ABC中,BC= ,

        則矩形的面積是:AB×BC=2× =

        21.

        證明:∵□ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E、F是AC上的兩點(diǎn),

        ∴AO=CO,BO=DO,

        ∵AE=CF,

        ∴AF=EC,則FO=EO,

        ∴四邊形BFDE是平行四邊形.

        22.

        (1)在Rt△ABC中,∠C=90°,AC= =2.4(米);

        (2)∵A′C=AC-AA′=2.4-0.4=2(米),A′B′=2.5(米),

        ∴B′C= =1.5(米),

        ∴B′B=B′C-BC=1.5-0.7=0.8(米)

        答:梯腳B將外移(即BB′的長(zhǎng))0.8米.

        23.

        解答:(1)證明:∵菱形ABCD,

        ∴AB=CD,AB∥CD,

        又∵BE=AB,

        ∴BE=CD,BE∥CD,

        ∴四邊形BECD是平行四邊形,

        ∴BD=EC;

        (2)解:∵平行四邊形BECD,

        ∴BD∥CE,

        ∴∠ABO=∠E=50°,

        又∵菱形ABCD,

        ∴AC丄BD,

        ∴∠BAO=90°-∠ABO=40°.

        24.

        (1)證明:∵四邊形ABCD是平行四邊形,

        ∴∠4=∠C,AD=CB,AB=CD.

        ∵點(diǎn)E、F分別是AB、CD的中點(diǎn),

        ∴AE= AB,CF= CD.

        ∴AE=CF.

        ∴△ADE≌△CBF(SAS).

        (2)解:當(dāng)四邊形BEDF是菱形時(shí),四邊形AGBD是矩形.

        證明:

        ∵四邊形ABCD是平行四邊形,

        ∴AD∥BC.

        ∵AG∥BD,

        ∴四邊形AGBD是平行四邊形.

        ∵四邊形BEDF是菱形,

        ∴DE=BE.

        ∴AE=BE,

        ∴AE=BE=DE.

        ∴∠1=∠2,∠3=∠4.

        ∵∠1+∠2+∠3+∠4=180°,

        ∴2∠2+2∠3=180°.

        ∴∠2+∠3=90°.

        即∠ADB=90°.

        ∴四邊形AGBD是矩形.

        (1)

        (2)

        26.

        (1)設(shè)經(jīng)過(guò)xs,四邊形PQCD為平行四邊形

        即PD=CQ

        所以24-x=3x,

        解得:x=6.(3分)

        (2)設(shè)經(jīng)過(guò)ys,四邊形PQBA為矩形,

        即AP=BQ,所以y=26-3y,

        解得:y= .

        (3)設(shè)經(jīng)過(guò)ts,四邊形PQCD是等腰梯形.過(guò)Q點(diǎn)作QE⊥AD,過(guò)D點(diǎn)作DF⊥BC,

        ∴四邊形PQCD是等腰梯形,

        又∵AD∥BC,∠B=90°,

        ∴AB=QE=DF.

        ∴△EQP≌△FDC.

        ∴FC=EP=BC-AD=26-24=2.

        又∵AE=BQ=26-3t EP=t-AE,

        ∴EP=AP-AE=t-(26-3t)=2.

        得:t=7.

        ∴經(jīng)過(guò)7s,∴PQ=DC.

      3718194