亚洲高清vr播放在线观看,欧美亚洲精品免费,欧美日韩天堂在线视频,午夜福利小视频

      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高二學(xué)習(xí)方法 > 高二數(shù)學(xué) > 高中數(shù)學(xué)必修4平面向量知識點

      高中數(shù)學(xué)必修4平面向量知識點

      時間: 鳳婷983 分享

      高中數(shù)學(xué)必修4平面向量知識點

        平面向量是在二維平面內(nèi)既有方向又有大小的量,是同學(xué)們學(xué)習(xí)數(shù)學(xué)的一個重點,下面是學(xué)習(xí)啦小編給大家?guī)淼母咧袛?shù)學(xué)必修4平面向量知識點,希望對你有幫助。

        1.平面向量基本概念

        有向線段:具有方向的線段叫做有向線段,以A為起點,B為終點的有向線段記作 或AB;

        向量的模:有向線段AB的長度叫做向量的模,記作|AB|;

        零向量:長度等于0的向量叫做零向量,記作 或0。(注意粗體格式,實數(shù)“0”和向量“0”是有區(qū)別的,書寫時要在實數(shù)“0”上加箭頭,以免混淆);

        相等向量:長度相等且方向相同的向量叫做相等向量;

        平行向量(共線向量):兩個方向相同或相反的非零向量叫做平行向量或共線向量,零向量與任意向量平行,即0//a;

        單位向量:模等于1個單位長度的向量叫做單位向量,通常用e表示,平行于坐標軸的單位向量習(xí)慣上分別用i、j表示。

        相反向量:與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

        2.平面向量運算

        加法與減法的代數(shù)運算:

        (1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).

        向量加法與減法的幾何表示:平行四邊形法則、三角形法則。

        向量加法有如下規(guī)律: + = + (交換律); +( +c)=( + )+c (結(jié)合律);

        實數(shù)與向量的積:實數(shù) 與向量 的積是一個向量。

        (1)| |=| |·| |;

        (2) 當 a>0時, 與a的方向相同;當a<0時, 與a的方向相反;當 a=0時,a=0.

        兩個向量共線的充要條件:

        (1) 向量b與非零向量 共線的充要條件是有且僅有一個實數(shù) ,使得b= .

        (2) 若 =( ),b=( )則 ‖b .

        3.平面向量基本定理

        若e1、e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量 ,有且只有一對實數(shù) , ,使得 = e1+ e2.

        4.平面向量有關(guān)推論

        三角形ABC內(nèi)一點O,OA·OB=OB·OC=OC·OA,則點O是三角形的垂心。

        若O是三角形ABC的外心,點M滿足OA+OB+OC=OM,則M是三角形ABC的垂心。

        若O和三角形ABC共面,且滿足OA+OB+OC=0,則O是三角形ABC的重心。

        三點共線:三點A,B,C共線推出OA=μOB+aOC(μ+a=1)

      2412397