亚洲高清vr播放在线观看,欧美亚洲精品免费,欧美日韩天堂在线视频,午夜福利小视频

      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) > 數(shù)學(xué)導(dǎo)數(shù)公式證明大全(2)

      數(shù)學(xué)導(dǎo)數(shù)公式證明大全(2)

      時(shí)間: 若木631 分享

      數(shù)學(xué)導(dǎo)數(shù)公式證明大全

      f'(x)

        =lim (sec(x+Δx)-secx)/Δx

        =lim (1/cos(x+Δx)-1/cosx)/Δx

        =lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)

        =lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx))

        =lim sinxsinΔx/(Δxcosxcos(x+Δx))

        =sinx/(cosx)^2=tanx*secx

        (9)f(x)=cscx

        f'(x)

        =lim (csc(x+Δx)-cscx)/Δx

        =lim (1/sin(x+Δx)-1/sinx)/Δx

        =lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))

        =lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx))

        =lim -sinΔxcosx/(Δxsinxsin(x+Δx))

        =-cosx/(sinx)^2=-cotx*cscx

        (10)f(x)=x^x

        lnf(x)=xlnx

        (lnf(x))'=(xlnx)'

        f'(x)/f(x)=lnx+1

        f'(x)=(lnx+1)*f(x)

        f'(x)=(lnx+1)*x^x

        (12)h(x)=f(x)g(x)

        h'(x)

        =lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx

        =lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx

        =lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx

        =lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx

        =f'(x)g(x)+f(x)g'(x)

        (13)h(x)=f(x)/g(x)

        h'(x)

        =lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx

        =lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))

        =lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))

        =lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))

        =lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))

        =f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))

        =[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x

        (14)h(x)=f(g(x))

        h'(x)

        =lim [f(g(x+Δx))-f(g(x))]/Δx

        =lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx

        (另g(x)=u,g(x+Δx)-g(x)=Δu)

        =lim (f(u+Δu)-f(u))/Δx

        =lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)

        =lim f'(u)*Δu/Δx

        =lim f'(u)*(g(x+Δx)-g(x))/Δx

        =f'(u)*g'(x)=f'(g(x))g'(x)

        (反三角函數(shù)的導(dǎo)數(shù)與三角函數(shù)的導(dǎo)數(shù)的乘積為1,因?yàn)楹瘮?shù)與反函數(shù)關(guān)于y=x對(duì)稱,所以導(dǎo)數(shù)也關(guān)于y=x對(duì)稱,所以導(dǎo)數(shù)的乘積為1)

        (15)y=f(x)=arcsinx

        則siny=x

        (siny)'=cosy

        所以

        (arcsinx)'=1/(siny)'=1/cosy

        =1/√1-(siny)^2

        (siny=x)

        =1/√1-x^2

        即f'(x)=1/√1-x^2

        (16)y=f(x)=arctanx

        則tany=x

        (tany)'=1+(tany)^2=1+x^2

        所以

        (arctanx)'=1/1+x^2

        即f'(x)= 1/1+x^2

        總結(jié)一下

        (x^n)'=nx^(n-1)

        (sinx)'=cosx

        (cosx)'=-sinx

        (a^x)'=a^xlna

        (e^x)'=e^x

        (loga^x)'=1/(xlna)

        (lnx)'=1/x

        (tanx)'=(secx)^2=1+(tanx)^2

        (cotx)'=-(cscx)^2=-1-(cotx)^2

        (secx)'=tanx*secx

        (cscx)'=-cotx*cscx

        (x^x)'=(lnx+1)*x^x

        (arcsinx)'=1/√1-x^2

        (arctanx)'=1/1+x^2

        [f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)

        [f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))

        [f(g(x))]'=f'(g(x))g'(x)

      118751