八年級數(shù)學(xué)知識點下冊人教版
只有學(xué)習(xí)精彩,生命才精彩,只有學(xué)習(xí)成功,事業(yè)才成功。每一門科目都有自己的學(xué)習(xí)方法,數(shù)學(xué)作為最燒腦的科目之一,需要不斷的練習(xí)。下面是小編給大家整理的一些八年級數(shù)學(xué)的知識點,希望對大家有所幫助。
初二數(shù)學(xué)下冊知識點歸納
第一章一元一次不等式和一元一次不等式組
一、一般地,用符號(或),(或)連接的式子叫做不等式.
能使不等式成立的未知數(shù)的值,叫做不等式的解.不等式的解不,把所有滿足不等式的解集合在一起,構(gòu)成不等式的解集.求不等式解集的過程叫解不等式.
由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組
不等式組的解集:一元一次不等式組各個不等式的解集的公共部分.
等式基本性質(zhì)1:在等式的兩邊都加上(或減去)同一個數(shù)或整式,所得的結(jié)果仍是等式.基本性質(zhì)2:在等式的兩邊都乘以或除以同一個數(shù)(除數(shù)不為0),所得的結(jié)果仍是等式.
二、不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變.(注:移項要變號,但不等號不變.)性質(zhì)2:不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變.性質(zhì)3:不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變.不等式的基本性質(zhì)1、若ab,則a+cb+c;2、若ab,c0則acbc若c0,則ac不等式的其他性質(zhì):反射性:若ab,則bb,且bc,則ac
三、解不等式的步驟:1、去分母;2、去括號;3、移項合并同類項;4、系數(shù)化為1.四、解不等式組的步驟:1、解出不等式的解集2、在同一數(shù)軸表示不等式的解集.五、列一元一次不等式組解實際問題的一般步驟:(1)審題;(2)設(shè)未知數(shù),找(不等量)關(guān)系式;(3)設(shè)元,(根據(jù)不等量)關(guān)系式列不等式(組)(4)解不等式組;檢驗并作答.
六、常考題型:1、求4x-67x-12的非負數(shù)解.2、已知3(x-a)=x-a+1r的解適合2(x-5)8a,求a的范圍.
3、當(dāng)m取何值時,3x+m-2(m+2)=3m+x的解在-5和5之間.
第二章分解因式
一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a22ab+b2=(ab)2二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.1、把幾個整式的積化成一個多項式的形式,是乘法運算.2、把一個多項式化成幾個整式的積的形式,是因式分解.3、ma+mb+mcm(a+b+c)4、因式分解與整式乘法是相反方向的變形.
三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式.找公因式的一般步驟:(1)若各項系數(shù)是整系數(shù),取系數(shù)的公約數(shù);(2)取相同的字母,字母的指數(shù)取較低的;(3)取相同的多項式,多項式的指數(shù)取較低的.(4)所有這些因式的乘積即為公因式.
四、分解因式的一般步驟為:(1)若有-先提取-,若多項式各項有公因式,則再提取公因式.(2)若多項式各項沒有公因式,則根據(jù)多項式特點,選用平方差公式或完全平方公式.(3)每一個多項式都要分解到不能再分解為止.
五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.分解因式的方法:1、提公因式法.2、運用公式法.
第三章分式
注:1對于任意一個分式,分母都不能為零.
2分式與整式不同的是:分式的分母中含有字母,整式的分母中不含字母.
3分式的值為零含兩層意思:分母不等于零;分子等于零.(中B0時,分式有意義;分式中,當(dāng)B=0分式無意義;當(dāng)A=0且B0時,分式的值為零.)
??贾R點:1、分式的意義,分式的化簡.2、分式的加減乘除運算.3、分式方程的解法及其利用分式方程解應(yīng)用題.
八年級數(shù)學(xué)知識點
1、在同一平面內(nèi)不相交的兩條直線叫做平行線,也可以說這兩條直線互相平行。例1、1、在同一平面內(nèi)兩條直線的位置關(guān)系為(相交)和(平行)。2、兩條直線相交成直角時,就說這兩條直線互相垂直,其…
平行四邊形矩形菱形正方形梯形等腰梯形圖形兩組對邊分別平行的四邊形。定義用“”表示平行四邊形,例如:ABCD,平行四邊形ABCD記作有一個角是直角的平有一組鄰邊相等的平行四邊形是菱形有一組鄰邊相等且…
第十八章平行四邊形的認識知識點回顧:平行四邊形、特殊平行四邊形的特征以及彼此之間的關(guān)系1.矩形是特殊的平行四邊形,矩形的四個內(nèi)角都是_____。矩形的對角線___2.菱形是特殊的平行四邊形,菱形是四條邊都__,它的兩條對角線__每條對角線平…
特殊的平行四邊形和一元二次方程的知識點歸納
【菱形】
1.菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2.菱形的性質(zhì):
(1)菱形的性質(zhì)有:①平行四邊形的一切性質(zhì);②四條邊都相等;③對角線互相垂直,并且每一條對角線平分一組對角;④菱形是對稱軸圖形,它有2條對稱軸,分別為它的兩條對角線所在的直線。
(2)菱形面積=底×高=對角線乘積的一半。
3.菱形的判定:
(1)用定義判定(即一組鄰邊相等的平行四邊形是菱形)。
(2)對角線互相垂直的平行四邊形是菱形。
(3)四條邊都相等的四邊形是菱形。
綜上可知,判定菱形時常用的思路:
四條邊都相等菱形
菱形四邊形
平行
四邊形有一組鄰邊相等菱形
【矩形】
1.矩形的定義:有一個角是直角的平行四邊形叫做矩形。
2.矩形的性質(zhì):(1)具有平行四邊形的一切性質(zhì);(2)矩形的四個角都是直角;
(3)矩形的四個角都相等。
4.矩形的判定方法:
(1)用定義判定(即有一個角是直角的平行四邊形是矩形);
(2)三個角都是直角的四邊形是矩形;
(3)對角線相等的平行四邊形是矩形。
綜上可知,判定矩形時常用的思路:
【正方形】
1.正方形的定義:有一組鄰邊相等,并且有一個角是直角的平行四邊形叫做正方形。
2.正方形的性質(zhì):正方形具有平行四邊形、矩形、菱形的一切性質(zhì)。
(1)邊:四條邊相等,鄰邊垂直且相等,對邊平行且相等。
1(2)角:四個角都是直角。
(3)對角線:對角線相等且互相垂直平分,每條對角線平分一組對角。
一該記的記,該背的背,不要以為理解了就行
有的同學(xué)認為,數(shù)學(xué)不像英語、史地,要背單詞、背年代、背地名,數(shù)學(xué)靠的是智慧、技巧和推理。我說你只講對了一半。數(shù)學(xué)同樣也離不開記憶。
因此,數(shù)學(xué)的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的“整式乘法三個公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學(xué)敲一敲警鐘,如果背不出這三個公式,將會對今后的學(xué)習(xí)造成很大的麻煩,因為今后的學(xué)習(xí)將會大量地用到這三個公式,特別是初二即將學(xué)的因式分解,其中相當(dāng)重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問題時再加深理解。打一個比方,數(shù)學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學(xué)的定義、法則、公式、定理就很難解數(shù)學(xué)題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學(xué)題,甚至是解數(shù)學(xué)難題中得心應(yīng)手。
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關(guān)系,可以建立一個相關(guān)等式:速度.時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。
物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實中的大量實際應(yīng)用,都需要建立方程,通過解方程來求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進而學(xué)好其它形式的方程。
所謂的“方程”思想就是對于數(shù)學(xué)問題,特別是現(xiàn)實當(dāng)中碰到的未知量和已知量的錯綜復(fù)雜的關(guān)系,善于用“方程”的觀點去構(gòu)建有關(guān)的方程,進而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
大千世界,“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢,越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。
3、“對應(yīng)”的思想
“對應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應(yīng)一個抽象的數(shù)“1”,將兩只眼睛、一對耳環(huán)、雙胞胎對應(yīng)一個抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對應(yīng)”擴展到對應(yīng)一種形式,對應(yīng)一種關(guān)系,等等。比如我們在計算或化簡中,將對應(yīng)公式的左邊,對應(yīng)a,y對應(yīng)b,再利用公式的右邊直接得出原式的結(jié)果即。
三自學(xué)能力的培養(yǎng)是深化學(xué)習(xí)的必由之路
在學(xué)習(xí)新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂“溫故而知新”。因此說,數(shù)學(xué)是一門能自學(xué)的學(xué)科,自學(xué)成才最典型的例子就是數(shù)學(xué)家華羅庚。
我們在課堂上聽老師講解,不光是學(xué)習(xí)新知識,更重要的是潛移默化老師的那種數(shù)學(xué)思維習(xí)慣,逐漸地培養(yǎng)起自己對數(shù)學(xué)的一種悟性。
自學(xué)能力越強,悟性就越高。隨著年齡的增長,同學(xué)們的依賴性應(yīng)不斷減弱,而自學(xué)能力則應(yīng)不斷增強。因此,要養(yǎng)成預(yù)習(xí)的習(xí)慣。
因此,以前的數(shù)學(xué)學(xué)得扎實,就為以后的進取奠定了基礎(chǔ),就不難自學(xué)新課。同時,在預(yù)習(xí)新課時,碰到什么自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。
學(xué)來學(xué)去,知識還是別人的。檢驗數(shù)學(xué)學(xué)得好不好的標準就是會不會解題。聽懂并記憶有關(guān)的定義、法則、公式、定理,只是學(xué)好數(shù)學(xué)的必要條件,能獨立解題、解對題才是學(xué)好數(shù)學(xué)的標志。
八年級數(shù)學(xué)知識點下冊相關(guān)文章: