關(guān)于數(shù)學(xué)初二上冊知識點(diǎn)總結(jié)
數(shù)學(xué)學(xué)習(xí)困難的研究是數(shù)學(xué)教學(xué)與實(shí)踐中一個(gè)引人注目的問題,但是數(shù)學(xué)又是一個(gè)拉分很大的科目,大家學(xué)習(xí)完最好總結(jié)一下知識點(diǎn)和公式。下面小編為大家?guī)黻P(guān)于數(shù)學(xué)初二上冊知識點(diǎn)總結(jié),希望大家喜歡!
數(shù)學(xué)初二上冊知識點(diǎn)
一、平面直角坐標(biāo)系:
在平面內(nèi)有公共原點(diǎn)而且互相垂直的兩條數(shù)軸,構(gòu)成了平面直角坐標(biāo)系。
二、知識點(diǎn)與題型總結(jié):
1、由點(diǎn)找坐標(biāo):
A點(diǎn)的坐標(biāo)記作A( 2,1 ),規(guī)定:橫坐標(biāo)在前,縱坐標(biāo)在后。
2、由坐標(biāo)找點(diǎn):例找點(diǎn)B( 3,-2 ) ?
由坐標(biāo)找點(diǎn)的方法:先找到表示橫坐標(biāo)與縱坐標(biāo)的點(diǎn),然后過這兩點(diǎn)分別作x軸與y軸的垂線,垂線的交點(diǎn)就是該坐標(biāo)對應(yīng)的點(diǎn)。
各象限點(diǎn)坐標(biāo)的符號:
①若點(diǎn)P(x,y)在第一象限,則x > 0,y > 0 ;
②若點(diǎn)P(x,y)在第二象限,則x < 0,y > 0 ;
③若點(diǎn)P(x,y)在第三象限,則x < 0,y < 0 ;
④若點(diǎn)P(x,y)在第四象限,則x > 0,y < 0 。
典型例題:
例1、點(diǎn)P的坐標(biāo)是(2,-3),則點(diǎn)P在第四象限。
例2、若點(diǎn)P(x,y)的坐標(biāo)滿足xy>0,則點(diǎn)P在第一或三象限。
例3、若點(diǎn)A的坐標(biāo)為(a^2+1, -2–b^2) ,則點(diǎn)A在第四象限。
4、坐標(biāo)軸上點(diǎn)的坐標(biāo)符號:
坐標(biāo)軸上的點(diǎn)不屬于任何象限。
① x軸上的點(diǎn)的縱坐標(biāo)為0,表示為(x,0),
② y軸上的點(diǎn)的橫坐標(biāo)為0,表示為(0,y),
③原點(diǎn)(0,0)既在x軸上,又在y軸上。
例4、點(diǎn)P(x,y )滿足xy = 0,則點(diǎn)P在x軸上或y軸上。 .
5、與坐標(biāo)軸平行的兩點(diǎn)連線:
①若AB‖ x軸,則A、B的縱坐標(biāo)相同;
②若AB‖ y軸,則A、B的橫坐標(biāo)相同。
例5、已知點(diǎn)A(10,5),B(50,5),則直線AB的位置特點(diǎn)是(A )
A、與x軸平行B、與y軸平行C、與x軸相交,但不垂直D、與y軸相交,但不垂直
6、象限角平分線上的點(diǎn):
①若點(diǎn)P在第一、三象限角的平分線上,則P( m, m );
②若點(diǎn)P在第二、四象限角的平分線上,則P( m, -m )。
例6、已知點(diǎn)A(2a+1,2+a)在第二象限的平分線上,試求A的坐標(biāo)。
解:由條件可知:2a+1 +(2+a)=0,解得a = -1,
∴ A(-1,1)。
例7、已知點(diǎn)M(a+1,3a-5)在兩坐標(biāo)軸夾角的平分線上,試求M的坐標(biāo)。
解:當(dāng)在一、三象限角平分線上時(shí),a+1=3a-5,
解得:a=3 ∴ M(4,4)
當(dāng)在二、四象限角平分線上時(shí),a+1+(3a-5 )=0,
解得:a=1 ∴ M(2,-2)
∴M的坐標(biāo)為(4,4)或(2,-2)
7、關(guān)于坐標(biāo)軸、原點(diǎn)的對稱點(diǎn):
①點(diǎn)(a, b )關(guān)于X軸的對稱點(diǎn)是(a , -b );
②點(diǎn)(a, b )關(guān)于Y軸的對稱點(diǎn)是( -a , b );
③點(diǎn)(a, b )關(guān)于原點(diǎn)的對稱點(diǎn)是( -a , -b )。
例8、已知點(diǎn)A(3a-1,1+a)在第一象限的平分線上,試求A關(guān)于原點(diǎn)的對稱點(diǎn)的坐標(biāo)。
解:由條件得:3a-1=1+a解得:a=1,∴ A(2,2),
∴ A關(guān)于原點(diǎn)的對稱點(diǎn)的坐標(biāo)為(-2,-2)。
8、點(diǎn)到坐標(biāo)軸的距離:
①點(diǎn)( x, y )到x軸的距離是∣y∣;
②點(diǎn)( x, y )到x軸的距離是∣x∣。
例9、點(diǎn)P到x軸、y軸的距離分別是2,1,則點(diǎn)P的坐標(biāo)可能為?
答案:(1,2)、(1,-2)、(-1,2)、(-1,-2) 。
三、知識拓展與提高:
例10、在平面直角坐標(biāo)系中,已知兩點(diǎn)A(0,1),B(8,5),點(diǎn)P在x軸上,則PA + PB的最小值是多少?
解:作點(diǎn)A(0,1)關(guān)于x軸的對稱點(diǎn)A'(0,-1),連接A'B與x軸交于點(diǎn)P,
則A'B路徑最短,即PA + PB最小。
根據(jù)勾股定理得:A'B = √[(1+5)^2 + 8^2] = 10 。
∴PA + PB的最小值是10 。
學(xué)習(xí)八年級數(shù)學(xué)方法
養(yǎng)成良好的解題習(xí)慣
要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯(cuò)題,可備有錯(cuò)題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。
在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
正確對待考試
首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
學(xué)習(xí)八年級數(shù)學(xué)答題技巧
選擇題的解法
1、直接法:根據(jù)選擇題的題設(shè)條件,通過計(jì)算、推理或判斷,最后得到題目的所求。
2、特殊值法:(特殊值淘汰法)有些選擇題所涉及的數(shù)學(xué)命題與字母的取值范圍有關(guān);
仔細(xì)審題
考試時(shí)精力要集中,審題一定要細(xì)心。要放慢速度,逐字逐句搞清題意(似曾相識的題目更要注意異同),從多層面挖掘隱含條件及條件間內(nèi)在聯(lián)系,為快速解答提供可靠的信息和依據(jù)。否則,一味求快,丟三落四,不是思維受阻,就是前功盡棄。
三層遞進(jìn)模式解題技巧
第一要保證不考砸。
第二要正常發(fā)揮。正常發(fā)揮就是將自己的水平發(fā)揮出80%,發(fā)揮出80%已經(jīng)很不簡單了,發(fā)揮出80%無疑是沒考砸。
第三要向更高標(biāo)準(zhǔn)邁進(jìn),就是在保證已發(fā)揮出 80%以后,再向發(fā)揮100%努力,再向超常發(fā)揮進(jìn)發(fā)。
關(guān)于數(shù)學(xué)初二上冊知識點(diǎn)總結(jié)相關(guān)文章:
★ 初二數(shù)學(xué)上冊知識點(diǎn)歸納最新
★ 初二上冊數(shù)學(xué)知識點(diǎn)總結(jié)
★ 八年級數(shù)學(xué)上學(xué)期知識點(diǎn)
★ 八年級上冊數(shù)學(xué)的實(shí)數(shù)知識點(diǎn)
★ 八年級數(shù)學(xué)上冊教學(xué)大綱范文3篇
★ 初二數(shù)學(xué)復(fù)習(xí)知識點(diǎn)筆記