亚洲高清vr播放在线观看,欧美亚洲精品免费,欧美日韩天堂在线视频,午夜福利小视频

      學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初二學(xué)習(xí)方法>八年級(jí)數(shù)學(xué)>

      初二數(shù)學(xué)知識(shí)點(diǎn)蘇教版

      時(shí)間: 躍瀚0 分享

      偉大的成績和辛勤勞動(dòng)是成正比例的,有一分勞動(dòng)就有一分收獲,積累,從少到多,奇跡就可以創(chuàng)造出來。學(xué)習(xí)也是一樣的,需要積累,從少變多。下面是小編給大家整理的一些初二數(shù)學(xué)的知識(shí)點(diǎn),希望對大家有所幫助。

      初二上學(xué)期數(shù)學(xué)知識(shí)點(diǎn)歸納

      分式方程

      一、理解定義

      1、分式方程:含分式,并且分母中含未知數(shù)的方程——分式方程。

      2、解分式方程的思路是:

      (1)在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程。

      (2)解這個(gè)整式方程。

      (3)把整式方程的根帶入最簡公分母,看結(jié)果是不是為零,使最簡公分母為零的根是原方程的增根,必須舍去。

      (4)寫出原方程的根。

      “一化二解三檢驗(yàn)四總結(jié)

      3、增根:分式方程的增根必須滿足兩個(gè)條件:

      (1)增根是最簡公分母為0;(2)增根是分式方程化成的整式方程的.根。

      4、分式方程的解法:

      (1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;

      (3)解整式方程;(4)驗(yàn)根;

      注:解分式方程時(shí),方程兩邊同乘以最簡公分母時(shí),最簡公分母有可能為0,這樣就產(chǎn)生了增根,因此分式方程一定要驗(yàn)根。

      分式方程檢驗(yàn)方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解。

      5、分式方程解實(shí)際問題

      步驟:審題—設(shè)未知數(shù)—列方程—解方程—檢驗(yàn)—寫出答案,檢驗(yàn)時(shí)要注意從方程本身和實(shí)際問題兩個(gè)方面進(jìn)行檢驗(yàn)。

      二、軸對稱圖形:

      一個(gè)圖形沿一條直線對折,直線兩旁的部分能夠完全重合。這條直線叫做對稱軸?;ハ嘀睾系狞c(diǎn)叫做對應(yīng)點(diǎn)。

      1、軸對稱:

      兩個(gè)圖形沿一條直線對折,其中一個(gè)圖形能夠與另一個(gè)圖形完全重合。這條直線叫做對稱軸?;ハ嘀睾系狞c(diǎn)叫做對應(yīng)點(diǎn)。

      2、軸對稱圖形與軸對稱的區(qū)別與聯(lián)系:

      (1)區(qū)別。軸對稱圖形討論的是“一個(gè)圖形與一條直線的對稱關(guān)系”;軸對稱討論的是“兩個(gè)圖形與一條直線的對稱關(guān)系”。

      (2)聯(lián)系。把軸對稱圖形中“對稱軸兩旁的部分看作兩個(gè)圖形”便是軸對稱;把軸對稱的“兩個(gè)圖形看作一個(gè)整體”便是軸對稱圖形。

      3、軸對稱的性質(zhì):

      (1)成軸對稱的兩個(gè)圖形全等。

      (2)對稱軸與連結(jié)“對應(yīng)點(diǎn)的線段”垂直。

      (3)對應(yīng)點(diǎn)到對稱軸的距離相等。

      (4)對應(yīng)點(diǎn)的連線互相平行。

      三、用坐標(biāo)表示軸對稱

      1、點(diǎn)(x,y)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為(x,-y);

      2、點(diǎn)(x,y)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為(-x,y);

      3、點(diǎn)(x,y)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)為(-x,-y)。

      四、關(guān)于坐標(biāo)軸夾角平分線對稱

      點(diǎn)P(x,y)關(guān)于第一、三象限坐標(biāo)軸夾角平分線y=x對稱的點(diǎn)的坐標(biāo)是(y,x)

      點(diǎn)P(x,y)關(guān)于第二、四象限坐標(biāo)軸夾角平分線y=-x對稱的點(diǎn)的坐標(biāo)是(-y,-x)

      初二數(shù)學(xué)三角形知識(shí)點(diǎn)歸納

      直角三角形

      ◆備考兵法

      1.正確區(qū)分勾股定理與其逆定理,掌握常用的勾股數(shù).

      2.在解決直角三角形的有關(guān)問題時(shí),應(yīng)注意以勾股定理為橋梁建立方程(組)來解決問題,實(shí)現(xiàn)幾何問題代數(shù)化.

      3.在解決直角三角形的相關(guān)問題時(shí),要注意題中是否含有特殊角(30°,45°,60°).若有,則應(yīng)運(yùn)用一些相關(guān)的特殊性質(zhì)解題.

      4.在解決許多非直角三角形的計(jì)算與證明問題時(shí),常常通過作高轉(zhuǎn)化為直角三角形來解決.

      5.折疊問題是新中考熱點(diǎn)之一,在處理折疊問題時(shí),動(dòng)手操作,認(rèn)真觀察,充分發(fā)揮空間想象力,注意折疊過程中,線段,角發(fā)生的變化,尋找破題思路.

      三角形的重心

      已知:△ABC中,D為BC中點(diǎn),E為AC中點(diǎn),AD與BE交于O,CO延長線交AB于F。求證:F為AB中點(diǎn)。

      證明:根據(jù)燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應(yīng)用燕尾定理即得AF=BF,命題得證。

      重心的幾條性質(zhì):

      1.重心和三角形3個(gè)頂點(diǎn)組成的3個(gè)三角形面積相等。

      2.重心到三角形3個(gè)頂點(diǎn)距離的平方和最小。

      3.在平面直角坐標(biāo)系中,重心的坐標(biāo)是頂點(diǎn)坐標(biāo)的算術(shù)平均,即其坐標(biāo)為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角坐標(biāo)系——橫坐標(biāo):(X1+X2+X3)/3縱坐標(biāo):(Y1+Y2+Y3)/3豎坐標(biāo):(Z1+Z2+Z3)/3

      4重心到頂點(diǎn)的距離與重心到對邊中點(diǎn)的距離之比為2:1。

      5.重心是三角形內(nèi)到三邊距離之積的點(diǎn)。

      如果用塞瓦定理證,則極易證三條中線交于一點(diǎn)。

      八年級(jí)上冊數(shù)學(xué)知識(shí)點(diǎn)

      一次函數(shù)

      20.1一次函數(shù)的概念

      1.一般地,解析式形如ykxb(kb是常數(shù),k0)的函數(shù)叫做一次函數(shù);一次函數(shù)的定義域是一切實(shí)數(shù)

      2.一般地,我們把函數(shù)yc(c為常數(shù))叫做常值函數(shù)

      20.2一次函數(shù)的圖像

      1.列表、描點(diǎn)、連線

      2.一條直線與y軸的交點(diǎn)的縱坐標(biāo)叫做這條直線在y軸上的截距,簡稱直線的截距

      3.一般地,直線ykxb(kb是常數(shù),k0)與y軸的交點(diǎn)坐標(biāo)是(0,b),直線的截距是b

      4.一次函數(shù)ykxb(b≠0)的圖像可以由正比例函數(shù)ykx的圖像平移得到當(dāng)b>0時(shí),向上平移b個(gè)單位,當(dāng)b<0時(shí),向下平移b的絕對值個(gè)單位

      5.一元一次不等式與一次函數(shù)之間的關(guān)系(看圖)

      20.3一次函數(shù)的性質(zhì)

      1.一次函數(shù)ykxb(kb是常數(shù),k?0)具有以下性質(zhì):

      當(dāng)k>0時(shí),函數(shù)值y隨自變量x的值增大而增大

      當(dāng)k<0時(shí),函數(shù)值y隨自變量x的值增大而減小

      ①如圖所示,當(dāng)k>0,b>0時(shí),直線經(jīng)過第一、二、三象限(直線不經(jīng)過第四象限);②如圖所示,當(dāng)k>0,b﹥O時(shí),直線經(jīng)過第一、三、四象限(直線不經(jīng)過第二象限);③如圖所示,當(dāng)k﹤O,b>0時(shí),直線經(jīng)過第一、二、四象限(直線不經(jīng)過第三象限);

      ④如圖所示,當(dāng)k﹤O,b﹤O時(shí),直線經(jīng)過第二、三、四象限(直線不經(jīng)過第一象限)

      初二數(shù)學(xué)知識(shí)點(diǎn)蘇教版相關(guān)文章

      蘇教版二年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      九年級(jí)新學(xué)期數(shù)學(xué)知識(shí)點(diǎn)蘇教版

      初一數(shù)學(xué)知識(shí)點(diǎn)上冊蘇教版

      各年級(jí)數(shù)學(xué)學(xué)習(xí)方法大全

      蘇教版初二數(shù)學(xué)下冊期末試卷

      各年級(jí)數(shù)學(xué)學(xué)習(xí)方法大全

      蘇教版二年級(jí)數(shù)學(xué)下冊知識(shí)點(diǎn)復(fù)習(xí)

      蘇教版八年級(jí)數(shù)學(xué)下冊課本答案參考

      八年級(jí)上冊數(shù)學(xué)課本答案蘇教版

      初二數(shù)學(xué)知識(shí)點(diǎn)蘇教版

      偉大的成績和辛勤勞動(dòng)是成正比例的,有一分勞動(dòng)就有一分收獲,積累,從少到多,奇跡就可以創(chuàng)造出來。學(xué)習(xí)也是一樣的,需要積累,從少變多。下面是小編給大家整理的一些初二數(shù)學(xué)的知識(shí)點(diǎn),希望對大家有所幫助。初二上
      推薦度:
      點(diǎn)擊下載文檔文檔為doc格式
      901634