初一數(shù)學(xué)重要知識(shí)點(diǎn)歸納
學(xué)習(xí)這件事不在乎有沒有人教你,最重要的是在于你自己有沒有覺悟和恒心。任何科目學(xué)習(xí)方法其實(shí)都是一樣的,不斷的記憶與練習(xí),使知識(shí)刻在腦海里。下面是小編給大家整理的初一數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家有所幫助。
七年級(jí)數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)
三角形的高線:
1、從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在的直線做垂線,頂點(diǎn)和垂足之間的線段叫做三角形的高線,簡(jiǎn)稱為三角形的高。
2、任意三角形都有三條高線,它們所在的直線相交于一點(diǎn)。(垂心)
3、注意等底等高知識(shí)的考試
7、相關(guān)命題:
1)三角形中最多有1個(gè)直角或鈍角,最多有3個(gè)銳角,最少有2個(gè)銳角。
2)銳角三角形中的銳角的取值范圍是60≤X<90。銳角不小于60度。
3)任意一個(gè)三角形兩角平分線的夾角=90+第三角的一半。
4)鈍角三角形有兩條高在外部。
5)全等圖形的大小(面積、周長)、形狀都相同。
6)面積相等的兩個(gè)三角形不一定是全等圖形。
7)能夠完全重合的兩個(gè)圖形是全等圖形。
8)三角形具有穩(wěn)定性。
9)三條邊分別對(duì)應(yīng)相等的兩個(gè)三角形全等。
10)三個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等。
11)兩個(gè)等邊三角形不一定全等。
12)兩角及一邊對(duì)應(yīng)相等的兩個(gè)三角形全等。
13)兩邊及一角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等。
14)兩邊及它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等。
15)兩條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。
16)一條斜邊和一直角邊對(duì)應(yīng)相等的兩個(gè)三角形全等。
17)一個(gè)銳角和一邊(直角邊或斜邊)對(duì)應(yīng)相等的兩個(gè)三角形全等。
18)一角和一邊對(duì)應(yīng)相等的兩個(gè)直角三角形不一定全等。
初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)
篇一:直線、射線、線段
(1)直線、射線、線段的表示方法
①直線:用一個(gè)小寫字母表示,如:直線l,或用兩個(gè)大寫字母(直線上的)表示,如直線AB.
②射線:是直線的一部分,用一個(gè)小寫字母表示,如:射線l;用兩個(gè)大寫字母表示,端點(diǎn)在前,如:射線OA.注意:用兩個(gè)字母表示時(shí),端點(diǎn)的字母放在前邊.
③線段:線段是直線的一部分,用一個(gè)小寫字母表示,如線段a;用兩個(gè)表示端點(diǎn)的字母表示,如:線段AB(或線段BA)。
(2)點(diǎn)與直線的位置關(guān)系:
①點(diǎn)經(jīng)過直線,說明點(diǎn)在直線上;
②點(diǎn)不經(jīng)過直線,說明點(diǎn)在直線外。
篇二:兩點(diǎn)間的距離
(1)兩點(diǎn)間的距離:連接兩點(diǎn)間的線段的長度叫兩點(diǎn)間的距離。
(2)平面上任意兩點(diǎn)間都有一定距離,它指的是連接這兩點(diǎn)的線段的長度,學(xué)習(xí)此概念時(shí),注意強(qiáng)調(diào)最后的兩個(gè)字“長度”,也就是說,它是一個(gè)量,有大小,區(qū)別于線段,線段是圖形.線段的長度才是兩點(diǎn)的距離.可以說畫線段,但不能說畫距離。
篇三:正方體
(1)對(duì)于此類問題一般方法是用紙按圖的樣子折疊后可以解決,或是在對(duì)展開圖理解的基礎(chǔ)上直接想象.
(2)從實(shí)物出發(fā),結(jié)合具體的問題,辨析幾何體的展開圖,通過結(jié)合立體圖形與平面圖形的轉(zhuǎn)化,建立空間觀念,是解決此類問題的關(guān)鍵.
(3)正方體的展開圖有11種情況,分析平面展開圖的各種情況后再認(rèn)真確定哪兩個(gè)面的對(duì)面.
數(shù)學(xué)初一知識(shí)點(diǎn)總結(jié)
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);π不是有理數(shù);
(2)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線.
3.相反數(shù):
(1)只有符號(hào)不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
4.絕對(duì)值:
(1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;
(2)絕對(duì)值可表示為:
絕對(duì)值的問題經(jīng)常分類討論;
(3)a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,
5.有理數(shù)比大?。?1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0
初一數(shù)學(xué)重要知識(shí)點(diǎn)歸納
1 過兩點(diǎn)有且只有一條直線
2 兩點(diǎn)之間線段最短
3 同角或等角的補(bǔ)角相等
4 同角或等角的余角相等
5 過一點(diǎn)有且只有一條直線和已知直線垂直
6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7 平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內(nèi)錯(cuò)角相等,兩直線平行
11 同旁內(nèi)角互補(bǔ),兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內(nèi)錯(cuò)角相等
14 兩直線平行,同旁內(nèi)角互補(bǔ)
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180
18 推論1 直角三角形的兩個(gè)銳角互余
19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角)
31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60
34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
35 推論1 三個(gè)角都相等的三角形是等邊三角形
36 推論 2 有一個(gè)角等于60的等腰三角形是等邊三角形
37 在直角三角形中,如果一個(gè)銳角等于30那么它所對(duì)的直角邊等于斜邊的一半
38 直角三角形斜邊上的中線等于斜邊上的一半
39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 ?
40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42 定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43 定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長線相交,那么交點(diǎn)在對(duì)稱軸上
初一數(shù)學(xué)重要知識(shí)點(diǎn)
正數(shù)和負(fù)數(shù)
⒈、正數(shù)和負(fù)數(shù)的概念
負(fù)數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負(fù)數(shù)
注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時(shí),—a是負(fù)數(shù);當(dāng)a表示負(fù)數(shù)時(shí),—a是正數(shù);當(dāng)a表示0時(shí),—a仍是0。(如果出判斷題為:帶正號(hào)的數(shù)是正數(shù),帶負(fù)號(hào)的數(shù)是負(fù)數(shù),這種說法是錯(cuò)誤的,例如+a,—a就不能做出簡(jiǎn)單判斷)
②正數(shù)有時(shí)也可以在前面加“+”,有時(shí)“+”省略不寫。所以省略“+”的正數(shù)的符號(hào)是正號(hào)。
2、具有相反意義的量
若正數(shù)表示某種意義的量,則負(fù)數(shù)可以表示具有與該正數(shù)相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
3、0表示的意義
(1)0表示“沒有”,如教室里有0個(gè)人,就是說教室里沒有人;
(2)0是正數(shù)和負(fù)數(shù)的分界線,0既不是正數(shù),也不是負(fù)數(shù)。如:
(3)0表示一個(gè)確切的量。如:0℃以及有些題目中的基準(zhǔn),比如以海平面為基準(zhǔn),則0米就表示海平面。
有理數(shù)
1、有理數(shù)的概念
(1)正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))
(2)正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱為分?jǐn)?shù)
(3)正整數(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。
理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。①π是無限不循環(huán)小數(shù),不能寫成分?jǐn)?shù)形式,不是有理數(shù)。②有限小數(shù)和無限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。③整數(shù)也能化成分?jǐn)?shù),也是有理數(shù)
注意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像—2,—4,—6,—8也是偶數(shù),—1,—3,—5也是奇數(shù)。
初一數(shù)學(xué)方法技巧
1.請(qǐng)概括的說一下學(xué)習(xí)的方法
曰:“像做其他事一樣,學(xué)習(xí)數(shù)學(xué)要研究方法。我為你們推薦的方法是:超前學(xué)習(xí),展開聯(lián)想,多做總結(jié),找出合情合理。
2.請(qǐng)談?wù)劤皩W(xué)習(xí)的好處
曰:“首先,超前學(xué)習(xí)能挖掘出自身的潛力,培養(yǎng)自學(xué)能力。經(jīng)過超前學(xué)習(xí),會(huì)發(fā)現(xiàn)自己能獨(dú)立解決許多問題,對(duì)提高自信心,培養(yǎng)學(xué)習(xí)興趣很有幫助。”
其次,夠消除對(duì)新知識(shí)的“隱患”。超前學(xué)習(xí)能夠發(fā)現(xiàn)在現(xiàn)有的基礎(chǔ)上,自己對(duì)新知識(shí)認(rèn)識(shí)的不妥之處。相反地,若直接聽別人說。似乎自己也能一開始就達(dá)到這種理解水平,實(shí)踐證明,并非這樣。
再次,超前學(xué)習(xí)中的有些內(nèi)容,當(dāng)時(shí)不能透徹理解,但經(jīng)過深思之后,即使擱置一邊,大腦也會(huì)潛意識(shí)“加工”。當(dāng)教師進(jìn)度進(jìn)行到這塊內(nèi)容時(shí),我們做第二次理解,會(huì)深刻的多。
最后,超前學(xué)習(xí)能提高聽課質(zhì)量。超前學(xué)習(xí)以后,我們發(fā)現(xiàn)新知識(shí)中的多數(shù)自己完全可以理解。只有少數(shù)地方需借助于別人。這樣,在課堂上,我們即能將可以集中注意力的時(shí)間放“這少數(shù)地方”的理解上,即“好鋼用在刀刃上”。事實(shí)上,一節(jié)課,能集中注意力的時(shí)間并不太多。
3.請(qǐng)談?wù)劼?lián)想與總結(jié)
曰:聯(lián)想與總結(jié)貫穿與學(xué)習(xí)過程中的始終。對(duì)每一知識(shí)的認(rèn)識(shí),必定要有認(rèn)識(shí)基礎(chǔ)。尋找認(rèn)識(shí)基礎(chǔ)的過程即是聯(lián)想,而認(rèn)識(shí)基礎(chǔ)的是對(duì)以前知識(shí)的總結(jié)。以前總結(jié)的越簡(jiǎn)潔、清晰、合理,越容易聯(lián)想。這樣就可以把新知識(shí)熔進(jìn)原來的知識(shí)結(jié)構(gòu)中為以后的某次聯(lián)想奠定基礎(chǔ)。聯(lián)想與總結(jié)在解題中特別有效。也許你以前并沒有這樣的認(rèn)識(shí),但解題能力卻很強(qiáng),這說明你很聰明,你在不自覺中使用這種做法。如果你能很明確的認(rèn)識(shí)這一點(diǎn),你的能力會(huì)更強(qiáng)。
4.那么我們?cè)鯓宇A(yù)習(xí)呢?
曰:“先說說學(xué)習(xí)的目標(biāo):(1)知道知識(shí)產(chǎn)生的背景,弄清知識(shí)形成的過程。
(2)或早或晚的知道知識(shí)的地位和作用:(3)總結(jié)出認(rèn)識(shí)問題的規(guī)律(或說出認(rèn)識(shí)問題使用了以前的什么規(guī)律)。
再說具體的做法:(1)對(duì)概念的理解。數(shù)學(xué)具有高度的抽象性。通常要借助具體的東西加以理解。有時(shí)借助字面的含義:有時(shí)借助其他學(xué)科知識(shí)。有時(shí)借助圖形……理解概念的境界是意會(huì)。一定要在理解概念上下一番苦功夫后再做題。
(2)對(duì)公式定理的預(yù)習(xí),公式定理是使用最多的“規(guī)律”的總結(jié)。如:完全平方公式,勾股定理等。往往公式的推導(dǎo)定理的證明蘊(yùn)含著豐富的數(shù)學(xué)方法及相當(dāng)有用的解題規(guī)律。如三角形內(nèi)角平分線定理的證明。我們應(yīng)當(dāng)先自己推導(dǎo)公式或證明定理,若做不成再參考別人的做法。無論是自己完成的,還是看別人的,都要說出這樣做是怎樣想出來的。
(3)對(duì)于例題及習(xí)題的處理見上面的(2)及下面的第五條。
初一數(shù)學(xué)重要知識(shí)點(diǎn)歸納相關(guān)文章:
★ 初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納
★ 初一數(shù)學(xué)上冊(cè)重點(diǎn)知識(shí)整理
★ 初一數(shù)學(xué)知識(shí)點(diǎn)梳理歸納
★ 初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)匯總歸納
★ 七年級(jí)數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)
★ 初一數(shù)學(xué)知識(shí)點(diǎn)整理
★ 初一數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)
★ 初一數(shù)學(xué)知識(shí)點(diǎn)小歸納