亚洲高清vr播放在线观看,欧美亚洲精品免费,欧美日韩天堂在线视频,午夜福利小视频

      學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

      高二數(shù)學(xué)必修基礎(chǔ)的知識(shí)要點(diǎn)

      時(shí)間: 贊銳0 分享

      在我們獲得成功之后,還應(yīng)記得:勝不驕,要繼續(xù)努力,不要因?yàn)橐粫r(shí)的成功而得意忘形,這樣才不會(huì)使自己一步錯(cuò),步步錯(cuò),而遺憾終生。以下是小編給大家整理的高二數(shù)學(xué)必修基礎(chǔ)的知識(shí)要點(diǎn),希望能幫助到你!

      高二數(shù)學(xué)必修基礎(chǔ)的知識(shí)要點(diǎn)1

      1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑.

      2、圓的方程

      (1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

      (2)一般方程

      當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

      當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形.

      (3)求圓方程的方法

      一般都采用待定系數(shù)法:先設(shè)后求.確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

      需求出a,b,r;若利用一般方程,需要求出D,E,F;

      另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置.

      3、高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié):直線與圓的位置關(guān)系:

      直線與圓的位置關(guān)系有相離,相切,相交三種情況:

      (1)設(shè)直線,圓,圓心到l的距離為,則有;;

      (2)過(guò)圓外一點(diǎn)的切線:k不存在,驗(yàn)證是否成立k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

      (3)過(guò)圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

      4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定.

      設(shè)圓,

      兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定.

      當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;

      當(dāng)時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

      當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

      當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;

      當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓.

      注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

      5、空間點(diǎn)、直線、平面的位置關(guān)系

      公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi).

      應(yīng)用:判斷直線是否在平面內(nèi)

      用符號(hào)語(yǔ)言表示公理1:

      公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線

      符號(hào):平面α和β相交,交線是a,記作α∩β=a.

      符號(hào)語(yǔ)言:

      公理2的作用:

      它是判定兩個(gè)平面相交的方法.

      它說(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線公共點(diǎn).

      它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù).

      公理3:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面.

      推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.

      公理3及其推論作用:它是空間內(nèi)確定平面的依據(jù)它是證明平面重合的依據(jù)

      公理4:平行于同一條直線的兩條直線互相平行

      高二數(shù)學(xué)必修基礎(chǔ)的知識(shí)要點(diǎn)2

      集合的分類:

      (1)按元素屬性分類,如點(diǎn)集,數(shù)集。

      (2)按元素的個(gè)數(shù)多少,分為有/無(wú)限集

      關(guān)于集合的概念:

      (1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說(shuō),不能確定的對(duì)象就不能構(gòu)成集合,也就是說(shuō),給定一個(gè)集合,任何一個(gè)對(duì)象是不是這個(gè)集合的元素也就確定了。

      (2)互異性:對(duì)于一個(gè)給定的集合,集合中的元素一定是不同的(或說(shuō)是互異的),這就是說(shuō),集合中的任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。

      (3)無(wú)序性:判斷一些對(duì)象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對(duì)象是否有明確的標(biāo)準(zhǔn)。

      集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類:

      含有有限個(gè)元素的集合叫做有限集,含有無(wú)限個(gè)元素的集合叫做無(wú)限集。

      非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;

      在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_;

      整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;

      有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

      實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無(wú)理數(shù)。其中無(wú)理數(shù)就是無(wú)限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的'點(diǎn)一一對(duì)應(yīng)的數(shù)。)

      1.列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來(lái),寫(xiě)在花括號(hào)“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}.

      有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號(hào)表示。

      例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.

      無(wú)限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.

      2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來(lái)描述。

      例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”

      而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為

      {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

      大括號(hào)內(nèi)豎線左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫(xiě)出只有集合內(nèi)的元素x才具有的性質(zhì)。

      一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

      它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡(jiǎn)稱描述法。

      例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

      高二數(shù)學(xué)必修基礎(chǔ)的知識(shí)要點(diǎn)3

      函數(shù)的單調(diào)性、奇偶性、周期性

      單調(diào)性:定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。

      判定方法有:定義法(作差比較和作商比較)

      導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))

      復(fù)合函數(shù)法和圖像法。

      應(yīng)用:比較大小,證明不等式,解不等式。

      奇偶性:

      定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);

      f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。

      判別方法:定義法,圖像法,復(fù)合函數(shù)法

      應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。

      周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。

      其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.

      應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。

      四、圖形變換:函數(shù)圖像變換:(重點(diǎn))要求掌握常見(jiàn)基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。

      常見(jiàn)圖像變化規(guī)律:(注意平移變化能夠用向量的語(yǔ)言解釋,和按向量平移聯(lián)系起來(lái)思考)

      平移變換y=f(x)→y=f(x+a),y=f(x)+b

      注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過(guò)平移得到函數(shù)y=f(2x+4)的圖象。

      (ⅱ)會(huì)結(jié)合向量的平移,理解按照向量(m,n)平移的意義。

      對(duì)稱變換y=f(x)→y=f(-x),關(guān)于y軸對(duì)稱

      y=f(x)→y=-f(x),關(guān)于x軸對(duì)稱

      y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對(duì)稱

      y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對(duì)稱。(注意:它是一個(gè)偶函數(shù))

      伸縮變換:y=f(x)→y=f(ωx),

      y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。

      一個(gè)重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對(duì)稱;

      高二數(shù)學(xué)必修基礎(chǔ)的知識(shí)要點(diǎn)相關(guān)文章

      高二數(shù)學(xué)知識(shí)點(diǎn)必修

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      高中數(shù)學(xué)必修知識(shí)點(diǎn)

      高二數(shù)學(xué)上下學(xué)期知識(shí)點(diǎn)復(fù)習(xí)提綱

      高二數(shù)學(xué)考點(diǎn)知識(shí)點(diǎn)總結(jié)復(fù)習(xí)大綱

      高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)

      最新高二數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)歸納

      高二數(shù)學(xué)知識(shí)點(diǎn)大全必修二

      高二數(shù)學(xué)整體知識(shí)總結(jié)

      高二數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)

      高二數(shù)學(xué)必修基礎(chǔ)的知識(shí)要點(diǎn)

      在我們獲得成功之后,還應(yīng)記得:勝不驕,要繼續(xù)努力,不要因?yàn)橐粫r(shí)的成功而得意忘形,這樣才不會(huì)使自己一步錯(cuò),步步錯(cuò),而遺憾終生。以下是小編給大家整理的高二數(shù)學(xué)必修基礎(chǔ)的知識(shí)要點(diǎn),希望能幫助到你!高二數(shù)學(xué)必
      推薦度:
      點(diǎn)擊下載文檔文檔為doc格式

      精選文章

      1070390