亚洲高清vr播放在线观看,欧美亚洲精品免费,欧美日韩天堂在线视频,午夜福利小视频

      學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

      2022高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      時(shí)間: 維維0 分享

      要成為德、智、體兼優(yōu)的勞動(dòng)者,鍛煉身體極為重要。身體健康是求學(xué)和將來工作之本。運(yùn)動(dòng)能治百病,能使人身體健康,頭腦敏捷,對學(xué)習(xí)有促進(jìn)作用。下面給大家分享一些高二數(shù)學(xué)知識(shí)點(diǎn),希望對大家有所幫助。

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

      一、直線與圓:

      1、直線的傾斜角的范圍是

      在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針方向轉(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時(shí),規(guī)定傾斜角為0;

      2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

      過兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。

      3、直線方程:⑴點(diǎn)斜式:直線過點(diǎn)斜率為,則直線方程為,

      ⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

      4、直線與直線的位置關(guān)系:

      (1)平行A1/A2=B1/B2注意檢驗(yàn)(2)垂直A1A2+B1B2=0

      5、點(diǎn)到直線的距離公式;

      兩條平行線與的距離是

      6、圓的標(biāo)準(zhǔn)方程:.⑵圓的一般方程:

      注意能將標(biāo)準(zhǔn)方程化為一般方程

      7、過圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

      8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交

      9、解決直線與圓的關(guān)系問題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長

      二、圓錐曲線方程:

      1、橢圓:①方程(a>b>0)注意還有一個(gè);②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

      2、雙曲線:①方程(a,b>0)注意還有一個(gè);②定義:||PF1|-|PF2||=2a<2c;③e=;④實(shí)軸長為2a,虛軸長為2b,焦距為2c;漸進(jìn)線或c2=a2+b2

      3、拋物線:①方程y2=2px注意還有三個(gè),能區(qū)別開口方向;②定義:|PF|=d焦點(diǎn)F(,0),準(zhǔn)線x=-;③焦半徑;焦點(diǎn)弦=x1+x2+p;

      4、直線被圓錐曲線截得的弦長公式:

      三、直線、平面、簡單幾何體:

      1、學(xué)會(huì)三視圖的分析:

      2、斜二測畫法應(yīng)注意的地方:

      (1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時(shí),把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

      (2)平行于x軸的線段長不變,平行于y軸的線段長減半.

      (3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

      3、表(側(cè))面積與體積公式:

      ⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

      ⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

      ⑶臺(tái)體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

      ⑷球體:①表面積:S=;②體積:V=

      4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

      (1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

      (2)平面與平面平行:①線面平行面面平行。

      (3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

      5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

      ⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

      ⑵直線與平面所成的角:直線與射影所成的角

      四、導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)

      1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.

      2.導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率

      ①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

      3.常見函數(shù)的導(dǎo)數(shù)公式:①;②;③;

      ⑤;⑥;⑦;⑧。

      4.導(dǎo)數(shù)的四則運(yùn)算法則:

      5.導(dǎo)數(shù)的應(yīng)用:

      (1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

      注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

      (2)求極值的步驟:

      ①求導(dǎo)數(shù);

      ②求方程的根;

      ③列表:檢驗(yàn)在方程根的左右的符號,如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;

      (3)求可導(dǎo)函數(shù)值與最小值的步驟:

      ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。

      五、常用邏輯用語:

      1、四種命題:

      ⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

      注:1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉(zhuǎn)化。

      2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.

      3、邏輯聯(lián)結(jié)詞:

      ⑴且(and):命題形式pq;pqpqpqp

      ⑵或(or):命題形式pq;真真真真假

      ⑶非(not):命題形式p.真假假真假

      假真假真真

      假假假假真

      “或命題”的真假特點(diǎn)是“一真即真,要假全假”;

      “且命題”的真假特點(diǎn)是“一假即假,要真全真”;

      “非命題”的真假特點(diǎn)是“一真一假”

      4、充要條件

      由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。

      5、全稱命題與特稱命題:

      短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。

      短語“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

      1.不等式證明的依據(jù)

      (2)不等式的性質(zhì)(略)

      (3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

      ②a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號)

      2.不等式的證明方法

      (1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.

      用比較法證明不等式的步驟是:作差——變形——判斷符號.

      (2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

      (3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

      證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

      異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線

      異面直線性質(zhì):既不平行,又不相交.

      異面直線判定:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該店的直線是異面直線

      異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

      求異面直線所成角步驟:

      A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角

      (7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ).

      (8)空間直線與平面之間的位置關(guān)系

      直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn).

      三種位置關(guān)系的符號表示:aαa∩α=Aaα

      (9)平面與平面之間的位置關(guān)系:平行——沒有公共點(diǎn);αβ

      相交——有一條公共直線.α∩β=b

      2、空間中的平行問題

      (1)直線與平面平行的判定及其性質(zhì)

      線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.

      線線平行線面平行

      線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,

      那么這條直線和交線平行.線面平行線線平行

      (2)平面與平面平行的判定及其性質(zhì)

      兩個(gè)平面平行的判定定理

      (1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行

      (線面平行→面面平行),

      (2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個(gè)平面平行.

      (線線平行→面面平行),

      (3)垂直于同一條直線的兩個(gè)平面平行,

      兩個(gè)平面平行的性質(zhì)定理

      (1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行.(面面平行→線面平行)

      (2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行.(面面平行→線線平行)

      3、空間中的垂直問題

      (1)線線、面面、線面垂直的定義

      兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.

      線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說這條直線和這個(gè)平面垂直.

      平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個(gè)平面垂直.

      (2)垂直關(guān)系的判定和性質(zhì)定理

      線面垂直判定定理和性質(zhì)定理

      判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面.

      性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行.

      面面垂直的判定定理和性質(zhì)定理

      判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直.

      性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面.

      4、空間角問題

      (1)直線與直線所成的角

      兩平行直線所成的角:規(guī)定為.

      兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

      兩條異面直線所成的角:過空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

      (2)直線和平面所成的角

      平面的平行線與平面所成的角:規(guī)定為.平面的垂線與平面所成的角:規(guī)定為.

      平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角.

      求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”.

      在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,

      在解題時(shí),注意挖掘題設(shè)中主要信息:

      (1)斜線上一點(diǎn)到面的垂線;

      (2)過斜線上的一點(diǎn)或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.

      (3)二面角和二面角的平面角

      二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面.

      二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

      直二面角:平面角是直角的二面角叫直二面角.

      兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過來,如果兩個(gè)平面垂直,那么所成的二面角為直二面角

      求二面角的方法

      定義法:在棱上選擇有關(guān)點(diǎn),過這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角

      垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角

      2022高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)相關(guān)文章

      高二數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié)

      高二數(shù)學(xué)必修二的知識(shí)點(diǎn)總結(jié)

      高二數(shù)學(xué)會(huì)考考試必考知識(shí)點(diǎn)

      高二數(shù)學(xué)文科重點(diǎn)知識(shí)點(diǎn)總結(jié)

      高二數(shù)學(xué)上冊知識(shí)點(diǎn)總結(jié)

      高二數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)

      人教版高二數(shù)學(xué)上冊必修知識(shí)點(diǎn)

      高二上學(xué)期數(shù)學(xué)教學(xué)總結(jié)2022最新

      2022高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      高中數(shù)學(xué)全部知識(shí)點(diǎn)提綱整理

      2022高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      要成為德、智、體兼優(yōu)的勞動(dòng)者,鍛煉身體極為重要。身體健康是求學(xué)和將來工作之本。運(yùn)動(dòng)能治百病,能使人身體健康,頭腦敏捷,對學(xué)習(xí)有促進(jìn)作用。下面給大家分享一些高二數(shù)學(xué)知識(shí)點(diǎn),希望對大家有所幫助。高二數(shù)學(xué)知
      推薦度:
      點(diǎn)擊下載文檔文檔為doc格式
      650256