高考(必看)數(shù)學(xué)??贾R點整理
高考(必看)數(shù)學(xué)常考知識點整理歸納
高考數(shù)學(xué)的大題具有綜合性、復(fù)雜性和創(chuàng)造性,做起來需要比較多的主觀能動性和主觀解答,每門學(xué)科的大題都是難點。下面是小編為大家整理的關(guān)于高考(必看)數(shù)學(xué)常考知識點整理,歡迎大家來閱讀。
高考數(shù)學(xué)必考知識點歸納
三角函數(shù)。
注意歸一公式、誘導(dǎo)公式的正確性。
數(shù)列題。
1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;
2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時,當(dāng)n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的`式子轉(zhuǎn)化到目標式子,一般進行適當(dāng)?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標式子,看符號,得到目標式子,下結(jié)論時一定寫上綜上:由①②得證;
3、證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單
立體幾何題。
1、證明線面位置關(guān)系,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。
概率問題。
1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);
2、搞清是什么概率模型,套用哪個公式;
3、記準均值、方差、標準差公式;
4、求概率時,正難則反(根據(jù)p1+p2+……+pn=1);
5、注意計數(shù)時利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
正弦、余弦典型例題。
1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為
2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°
3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°
4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°
5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。
正弦、余弦解題訣竅。
1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。
2、已知三邊,或兩邊及其夾角用余弦定理
3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。
高考數(shù)學(xué)必考知識點
對數(shù)函數(shù)性質(zhì)
定義域求解:對數(shù)函數(shù)y=logax的定義域是{x丨x>0},但如果遇到對數(shù)型復(fù)合函數(shù)的定義域的求解,除了要注意大于0以外,還應(yīng)注意底數(shù)大于0且不等于1,如求函數(shù)y=logx(2x-1)的定義域,需同時滿足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定義域為{x丨x>1/2且x≠1}
值域:實數(shù)集R,顯然對數(shù)函數(shù)無界。
定點:函數(shù)圖像恒過定點(1,0)。
單調(diào)性:a>1時,在定義域上為單調(diào)增函數(shù);
奇偶性:非奇非偶函數(shù)
周期性:不是周期函數(shù)
對稱性:無
最值:無
零點:x=1
注意:負數(shù)和0沒有對數(shù)。
兩句經(jīng)典話:底真同對數(shù)正,底真異對數(shù)負。解釋如下:
也就是說:若y=logab (其中a>0,a≠1,b>0)
當(dāng)a>1,b>1時,y=logab>0;
當(dāng)01時,y=logab<0;
當(dāng)a>1,0
高考數(shù)學(xué)??贾R點
集合與簡單邏輯
1.易錯點遺忘空集致誤
錯因分析:由于空集是任何非空集合的真子集,因此,對于集合B,就有B=A,φ≠B,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了B≠φ這種情況,導(dǎo)致解題結(jié)果錯誤。尤其是在解含有參數(shù)的集合問題時,更要充分注意當(dāng)參數(shù)在某個范圍內(nèi)取值時所給的集合可能是空集這種情況??占且粋€特殊的集合,由于思維定式的原因,考生往往會在解題中遺忘了這個集合,導(dǎo)致解題錯誤或是解題不全面。
2.易錯點忽視集合元素的三性致誤
錯因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。在解題時也可以先確定字母參數(shù)的范圍后,再具體解決問題。
3.易錯點四種命題的結(jié)構(gòu)不明致誤
錯因分析:如果原命題是“若A則B”,則這個命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。
這里面有兩組等價的命題,即“原命題和它的逆否命題等價,否命題與逆命題等價”。在解答由一個命題寫出該命題的其他形式的命題時,一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價關(guān)系。
另外,在否定一個命題時,要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a,b都是奇數(shù)”。
4.易錯點充分必要條件顛倒致誤
錯因分析:對于兩個條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充要條件的概念作出準確的判斷。
5.易錯點邏輯聯(lián)結(jié)詞理解不準致誤
錯因分析:在判斷含邏輯聯(lián)結(jié)詞的命題時很容易因為理解不準確而出現(xiàn)錯誤,在這里我們給出一些常用的判斷方法,希望對大家有所幫助:
p∨q真<=>p真或q真,
p∨q假<=>p假且q假(概括為一真即真);
p∧q真<=>p真且q真,
p∧q假<=>p假或q假(概括為一假即假);
┐p真<=>p假,┐p假<=>p真(概括為一真一假)。