2020高考文科數(shù)學(xué)知識點梳理
只有高效的學(xué)習(xí)方法,才可以很快的掌握知識的重難點。有效的讀書方式根據(jù)規(guī)律掌握方法,不要一來就死記硬背,先找規(guī)律,再記憶,然后再學(xué)習(xí),就能很快的掌握知識。接下來是小編為大家整理的2020高考文科數(shù)學(xué)知識點梳理,希望大家喜歡!
2020高考文科數(shù)學(xué)知識點梳理一
1、導(dǎo)數(shù)的定義:在點處的導(dǎo)數(shù)記作.
2.導(dǎo)數(shù)的幾何物理意義:曲線在點處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.常見函數(shù)的導(dǎo)數(shù)公式:
4.導(dǎo)數(shù)的四則運算法則:
5.導(dǎo)數(shù)的應(yīng)用:
(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
?、偾髮?dǎo)數(shù);
?、谇蠓匠痰母?
?、哿斜恚簷z驗在方程根的左右的符號,如果左正右負,那么函數(shù)在這個根處取得極大值;如果左負右正,那么函數(shù)在這個根處取得極小值;
(3)求可導(dǎo)函數(shù)值與最小值的步驟:
ⅰ求的根;ⅱ把根與區(qū)間端點函數(shù)值比較,的為值,最小的是最小值。
2020高考文科數(shù)學(xué)知識點梳理二
等差數(shù)列
對于一個數(shù)列{an},如果任意相鄰兩項之差為一個常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。
那么,通項公式為,其求法很重要,利用了“疊加原理”的思想:
將以上n-1個式子相加,便會接連消去很多相關(guān)的項,最終等式左邊余下an,而右邊則余下a1和n-1個d,如此便得到上述通項公式。
此外,數(shù)列前n項的和,其具體推導(dǎo)方式較簡單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再復(fù)述。
值得說明的是,前n項的和Sn除以n后,便得到一個以a1為首項,以d/2為公差的新數(shù)列,利用這一特點可以使很多涉及Sn的數(shù)列問題迎刃而解。
等比數(shù)列
對于一個數(shù)列{an},如果任意相鄰兩項之商(即二者的比)為一個常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項a1到第n項an的總和,記為Tn。
那么,通項公式為(即a1乘以q的(n-1)次方,其推導(dǎo)為“連乘原理”的思想:
a2=a1_,
a3=a2_,
a4=a3_,
````````
an=an-1_,
將以上(n-1)項相乘,左右消去相應(yīng)項后,左邊余下an,右邊余下a1和(n-1)個q的乘積,也即得到了所述通項公式。
此外,當q=1時該數(shù)列的前n項和Tn=a1_
當q≠1時該數(shù)列前n項的和Tn=a1_1-q^(n))/(1-q).
2020高考文科數(shù)學(xué)知識點梳理三
(1)總體和樣本
①在統(tǒng)計學(xué)中,把研究對象的全體叫做總體.
?、诎衙總€研究對象叫做個體.
?、郯芽傮w中個體的總數(shù)叫做總體容量.
?、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
(2)簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨
機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
(3)簡單隨機抽樣常用的方法:
①抽簽法
?、陔S機數(shù)表法
?、塾嬎銠C模擬法
在簡單隨機抽樣的樣本容量設(shè)計中,主要考慮:
?、倏傮w變異情況;
?、谠试S誤差范圍;
?、鄹怕时WC程度。
(4)抽簽法:
①給調(diào)查對象群體中的每一個對象編號;
?、跍蕚涑楹灥墓ぞ?,實施抽簽;
?、蹖颖局械拿恳粋€個體進行測量或調(diào)查
2020高考文科數(shù)學(xué)知識點梳理四
(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗的前提下可以近似地作為這個事件的概率。
2020高考文科數(shù)學(xué)知識點梳理相關(guān)文章:
2.2020高考數(shù)學(xué)必考知識點總結(jié)
9.2020高考文科學(xué)習(xí)經(jīng)驗總結(jié)
10.2020高考文綜考點歸納