高考數(shù)學(xué)知識點整理
數(shù)學(xué)一直是理科生眼中比較難的一門學(xué)科,其實高中數(shù)學(xué)有許多知識點,為了讓同學(xué)們不再因此丟分,下面小編就同大家聊聊關(guān)于高考數(shù)學(xué)知識點總結(jié),希望有所幫助!
高考數(shù)學(xué)知識點總結(jié):導(dǎo)數(shù)
(一)導(dǎo)數(shù)第一定義
設(shè)函數(shù) y = f(x) 在點 x0 的某個領(lǐng)域內(nèi)有定義,當自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內(nèi) ) 時,相應(yīng)地函數(shù)取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導(dǎo),并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導(dǎo)數(shù)記為 f'(x0) ,即導(dǎo)數(shù)第一定義
(二)導(dǎo)數(shù)第二定義
設(shè)函數(shù) y = f(x) 在點 x0 的某個領(lǐng)域內(nèi)有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內(nèi) ) 時,相應(yīng)地函數(shù)變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導(dǎo),并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導(dǎo)數(shù)記為 f'(x0) ,即 導(dǎo)數(shù)第二定義
(三)導(dǎo)函數(shù)與導(dǎo)數(shù)
如果函數(shù) y = f(x) 在開區(qū)間 I 內(nèi)每一點都可導(dǎo),就稱函數(shù)f(x)在區(qū)間 I 內(nèi)可導(dǎo)。這時函數(shù) y = f(x) 對于區(qū)間 I 內(nèi)的每一個確定的 x 值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù) y = f(x) 的導(dǎo)函數(shù),記作 y', f'(x), dy/dx, df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。
(四)單調(diào)性及其應(yīng)用
1.利用導(dǎo)數(shù)研究多項式函數(shù)單調(diào)性的一般步驟
(1)求f?(x)
(2)確定f?(x)在(a,b)內(nèi)符號 (3)若f?(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f?(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2.用導(dǎo)數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟
(1)求f?(x)
(2)f?(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間; f?(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間
高考數(shù)學(xué)知識點總結(jié):如何高效的掌握高中數(shù)學(xué)知識點一
一、把知識點進行分類
高中三年所學(xué)的知識點并不少,但是如果進行分類的話,總的來說也不過八九個系列。所以要想更高效的掌握高中數(shù)學(xué)知識點,可以通過把知識點進行分類的方法來達到。你可以想象,不同的知識點系列分別放進不同的箱子,把每個箱子里的知識點挨個解決掉,就能夠有很不錯的掌握高中數(shù)學(xué)知識點了。
高考數(shù)學(xué)知識點總結(jié):如何高效的掌握高中數(shù)學(xué)知識點二
二、要按照任務(wù)來劃分計劃
把高中數(shù)學(xué)知識點進行了分類,接下來要把各個類別的知識點分配給自己,也就是給大腦分配任務(wù),只有大腦完全掌握了才能夠在高考中取得好成績。每個類別的知識點不可能一次性解決掉,我們需要有計劃性的去攻克它們。
要注意把各個類別的知識點按照難易程度和內(nèi)容的差異性來制定計劃,比如這個類別的知識點大概要花多長時間,另一個類別可能會花的時間會更長或更短,可以把每天的學(xué)習(xí)時間中的一部分用來制定高中數(shù)學(xué)知識點的掌握上。當然最好是把你的計劃寫出來,列出大綱,這樣就可以目標明確的去執(zhí)行了。
高考數(shù)學(xué)知識點總結(jié):如何高效的掌握高中數(shù)學(xué)知識點三
三、時間的安排要注意合理化
要制定計劃是很容易的,但是最難的還是在于是不是能夠真正有效的去執(zhí)行這些計劃。如果要想讓你的計劃很完美,需要兩個方面的支撐:一個方面是這個目標是可以量化的;另一個方面是目標制定的時間是可以控制的。
需要明確下目標制定的時間是可以控制的,就是把高中數(shù)學(xué)知識點的學(xué)習(xí)當作大大小小的任務(wù),而這些任務(wù)不要一開始就是內(nèi)容多難度大,而要從小處著手,然后再一級一級的增加。循序漸進才能取得更好的效果。
如何高效的掌握高中數(shù)學(xué)知識點?小編提醒大家,在學(xué)習(xí)的過程中要學(xué)會自我激勵和鼓勵,要懂得從學(xué)習(xí)中尋找成就感,這樣才能確保在學(xué)習(xí)過程中始終抱有熱情。高考是有難度的,學(xué)習(xí)是枯燥乏味的,但是只要有信心有熱情,就能夠達到制高點。
高考數(shù)學(xué)知識點總結(jié)精華一
一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)
主要是考函數(shù)和導(dǎo)數(shù),因為這是整個高中階段中最核心的部分,這部分里還重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析。
二、平面向量和三角函數(shù)
對于這部分知識重點考察三個方面:是劃減與求值,第一,重點掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來解三角形,這方面難度并不大。
高考數(shù)學(xué)知識點總結(jié)精華二
三、數(shù)列
數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。
四、空間向量和立體幾何
在里面重點考察兩個方面:一個是證明;一個是計算。
五、概率和統(tǒng)計
概率和統(tǒng)計主要屬于數(shù)學(xué)應(yīng)用問題的范疇,需要掌握幾個方面:……等可能的概率;……事件;獨立事件和獨立重復(fù)事件發(fā)生的概率。
高考數(shù)學(xué)知識點總結(jié)精華三
六、解析幾何
這部分內(nèi)容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準確度。
七、壓軸題
同學(xué)們在最后的備考復(fù)習(xí)中,還應(yīng)該把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。
高考數(shù)學(xué)直線方程知識點:什么是直線方程
從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與 X 軸正向的 夾角( 叫直線的傾斜角 )或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度??梢酝ㄟ^斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
高考數(shù)學(xué)知識點大全相關(guān)文章:
★ 2020高考數(shù)學(xué)知識點總結(jié)大全
★ 高三數(shù)學(xué)知識點考點總結(jié)大全
★ 2020高考數(shù)學(xué)知識點歸納總結(jié)大全