亚洲高清vr播放在线观看,欧美亚洲精品免费,欧美日韩天堂在线视频,午夜福利小视频

      學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

      高三函數(shù)知識(shí)點(diǎn)總結(jié)

      時(shí)間: 維維4594 分享

      函數(shù),在數(shù)學(xué)中是兩不為空集的集合間的一種對(duì)應(yīng)關(guān)系:輸入值集合中的每項(xiàng)元素皆能對(duì)應(yīng)唯一一項(xiàng)輸出值集合中的元素。這次小編給大家整理了高三函數(shù)知識(shí)點(diǎn)總結(jié),供大家閱讀參考。

      高三函數(shù)知識(shí)點(diǎn)總結(jié)

      高三函數(shù)知識(shí)點(diǎn)總結(jié)

      1. 函數(shù)的奇偶性

      (1)若f(x)是偶函數(shù),那么f(x)=f(-x) ;

      (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則 f(0)=0(可用于求參數(shù));

      (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或 (f(x)≠0);

      (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

      (5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

      2. 復(fù)合函數(shù)的有關(guān)問題

      (1)復(fù)合函數(shù)定義域求法:若已知 的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求 f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即 f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

      (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

      3.函數(shù)圖像(或方程曲線的對(duì)稱性)

      (1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

      (2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

      (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

      (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;

      (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;

      (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x= 對(duì)稱;

      4.函數(shù)的周期性

      (1)y=f(x)對(duì)x∈R時(shí),f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

      (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);

      (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);

      (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2 的周期函數(shù);

      (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2 的周期函數(shù);

      (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數(shù);

      5.方程

      (1)方程k=f(x)有解 k∈D(D為f(x)的值域);

      (2)a≥f(x) 恒成立 a≥[f(x)]max,;

      a≤f(x) 恒成立 a≤[f(x)]min;

      (3)(a>0,a≠1,b>0,n∈R+);

      log a N= ( a>0,a≠1,b>0,b≠1);

      (4)log a b的符號(hào)由口訣“同正異負(fù)”記憶;

      a log a N= N ( a>0,a≠1,N>0 );

      6.映射

      判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):

      (1)A中元素必須都有象且唯一;

      (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

      7.函數(shù)單調(diào)性

      (1)能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性;

      (2)依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問題

      8.反函數(shù)

      對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:

      (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

      (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

      (3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

      (4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;

      (5) y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

      9.數(shù)形結(jié)合

      處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系.

      10. 恒成立問題

      恒成立問題的處理方法

      (1)分離參數(shù)法;

      (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

      高三函數(shù)知識(shí)點(diǎn)

      1.集合的含義與表示

      集合的含義:集合為一些確定的、不同的東西的全體,人們能意識(shí)到這些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)整體。

      把研究對(duì)象統(tǒng)稱為元素,把一些元素組成的總體叫集合,簡稱為集。

      2.集合的中元素的三個(gè)特性:

      (1)元素的確定性:集合確定,則一元素是否屬于這個(gè)集合是確定的:屬于或不屬于。

      (2)元素的互異性:一個(gè)給定集合中的元素是唯一的,不可重復(fù)的。

      (3)元素的無序性:集合中元素的位置是可以改變的,并且改變位置不影響集合

      3.集合的表示:{…}

      (1)用大寫字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

      (2)集合的表示方法:列舉法與描述法。

      a、列舉法:將集合中的元素一一列舉出來{a,b,c……}

      b、描述法:

      ①區(qū)間法:將集合中元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合。

      {x?R|x-3>2},{x|x-3>2}

      ②語言描述法:例:{不是直角三角形的三角形}

      ③Venn圖:畫出一條封閉的曲線,曲線里面表示集合。

      4.集合的分類:

      (1)有限集:含有有限個(gè)元素的集合

      (2)無限集:含有無限個(gè)元素的集合

      (3)空集:不含任何元素的集合

      5.元素與集合的關(guān)系:

      (1)元素在集合里,則元素屬于集合,即:a?A

      (2)元素不在集合里,則元素不屬于集合,即:a¢A

      注意:常用數(shù)集及其記法:

      非負(fù)整數(shù)集(即自然數(shù)集)記作:N

      正整數(shù)集N-或N+

      整數(shù)集Z

      有理數(shù)集Q

      實(shí)數(shù)集R

      6.集合間的基本關(guān)系

      (1)“包含”關(guān)系(1)—子集

      定義:如果集合A的任何一個(gè)元素都是集合B的元素,我們說這兩個(gè)集合有包含關(guān)系,稱集合A是集合B的子集。

      函數(shù)知識(shí)點(diǎn)

      一次函數(shù)

      1.一次函數(shù)定義與定義式:

      自變量x和因變量y有如下關(guān)系:

      y=kx+b

      則此時(shí)稱y是x的一次函數(shù)。

      特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。

      即:y=kx(k為常數(shù),k≠0)

      2.一次函數(shù)的性質(zhì):

      1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k

      即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

      2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

      3.一次函數(shù)的圖像及性質(zhì):

      (1)作法與圖形:通過如下3個(gè)步驟

      a 列表;

      b 描點(diǎn);

      c 連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

      (2)性質(zhì):

      a 在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

      b 一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。

      (3)k,b與函數(shù)圖像所在象限:

      當(dāng)k>0時(shí),直線必通過一、三象限,y隨x的增大而增大;

      當(dāng)k<0時(shí),直線必通過二、四象限,y隨x的增大而減小。

      當(dāng)b>0時(shí),直線必通過一、二象限;

      當(dāng)b=0時(shí),直線通過原點(diǎn)

      當(dāng)b<0時(shí),直線必通過三、四象限。

      特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

      這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。

      4.確定一次函數(shù)的表達(dá)式:

      已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。

      (1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

      (2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

      (3)解這個(gè)二元一次方程,得到k,b的值。

      (4)最后得到一次函數(shù)的表達(dá)式。

      5.一次函數(shù)在生活中的應(yīng)用:

      (1)當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。

      (2)當(dāng)水池抽水速度f一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。

      6.常用公式:

      (1)求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

      (2)求與x軸平行線段的中點(diǎn):|x1-x2|/2

      (3)求與y軸平行線段的中點(diǎn):|y1-y2|/2

      (4)求任意線段的長:√(x1-x2)’2+(y1-y2)’2(注:根號(hào)下(x1-x2)與(y1-y2)的平方和)

      函數(shù)知識(shí)點(diǎn)總結(jié)

      二次函數(shù)

      1.定義與定義表達(dá)式

      一般地,自變量x和因變量y之間存在如下關(guān)系:

      y=ax’2+bx+c

      (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

      則稱y為x的二次函數(shù)。

      二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

      2.二次函數(shù)的三種表達(dá)式

      一般式:y=ax’2+bx+c(a,b,c為常數(shù),a≠0)

      頂點(diǎn)式:y=a(x-h)’2+k[拋物線的頂點(diǎn)P(h,k)]

      交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

      注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

      h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2a

      3.二次函數(shù)的圖像

      在平面直角坐標(biāo)系中作出二次函數(shù)y=x’2的圖像,

      可以看出,二次函數(shù)的圖像是一條拋物線。

      4.拋物線的性質(zhì)

      (1)拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線

      x=-b/2a。

      對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

      特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

      (2)拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

      P(-b/2a,(4ac-b’2)/4a)

      當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b’2-4ac=0時(shí),P在x軸上。

      (3)二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小

      當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

      |a|越大,則拋物線的開口越小。

      (4)一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置

      當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

      當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

      (5)常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)

      拋物線與y軸交于(0,c)

      (6)拋物線與x軸交點(diǎn)個(gè)數(shù)

      Δ=b’2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

      Δ=b’2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

      Δ=b’2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b’2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

      5.二次函數(shù)與一元二次方程

      特別地,二次函數(shù)(以下稱函數(shù))y=ax’2+bx+c,

      當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

      即ax’2+bx+c=0

      此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。

      函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

      函數(shù)的表示方法

      1.列表法。用表格的方式把x與y的對(duì)應(yīng)關(guān)系一一列舉出來.比較少用。

      用含有數(shù)學(xué)關(guān)系的等式來表示兩個(gè)變量之間的函數(shù)關(guān)系的方法叫做解析式法。這種方法的優(yōu)點(diǎn)是能簡明、準(zhǔn)確、清楚地表示出函數(shù)與自變量之間的數(shù)量關(guān)系;缺點(diǎn)是求對(duì)應(yīng)值時(shí)往往要經(jīng)過較復(fù)雜的運(yùn)算,而且在實(shí)際問題中有的函數(shù)關(guān)系不一定能用表達(dá)式表示出來。

      2.解析法。用解析式把把x與y的對(duì)應(yīng)關(guān)系表述出來,最常見的一種表示函數(shù)關(guān)系的方法。

      3.圖像法。在坐標(biāo)平面中用曲線的表示出函數(shù)關(guān)系,比較常用,經(jīng)常和解析式結(jié)合起來理解函數(shù)的性質(zhì)。

      把一個(gè)函數(shù)的自變量x與對(duì)應(yīng)的因變量y的值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。這種表示函數(shù)關(guān)系的方法叫做圖象法。這種方法的優(yōu)點(diǎn)是通過函數(shù)圖象可以直觀、形象地把函數(shù)關(guān)系表示出來;缺點(diǎn)是從圖象觀察得到的數(shù)量關(guān)系是近似的。

      4.列表法。用列表的方法來表示兩個(gè)變量之間函數(shù)關(guān)系的方法叫做列表法。這種方法的優(yōu)點(diǎn)是通過表格中已知自變量的值,可以直接讀出與之對(duì)應(yīng)的函數(shù)值;缺點(diǎn)是只能列出部分對(duì)應(yīng)值,難以反映函數(shù)的全貌。

      高三函數(shù)知識(shí)點(diǎn)總結(jié)相關(guān)文章

      高三數(shù)學(xué)的主要知識(shí)點(diǎn)筆記

      高三數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)整合

      高三數(shù)學(xué)知識(shí)考點(diǎn)整理集錦

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與歸納

      高中數(shù)學(xué)必修一三角函數(shù)知識(shí)點(diǎn)總結(jié)

      高三數(shù)學(xué)第一輪復(fù)習(xí)知識(shí)點(diǎn)

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

      高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)

      高三數(shù)學(xué)考試必考的重要知識(shí)點(diǎn)歸納

      778803