亚洲高清vr播放在线观看,欧美亚洲精品免费,欧美日韩天堂在线视频,午夜福利小视频

      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) > 高一數(shù)學(xué)難點(diǎn)知識點(diǎn)歸納

      高一數(shù)學(xué)難點(diǎn)知識點(diǎn)歸納

      時間: 楚琪0 分享

      2022高一數(shù)學(xué)難點(diǎn)知識點(diǎn)歸納

      總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性結(jié)論的書面材料,它能夠給人努力工作的動力,不如靜下心來好好寫寫總結(jié)吧??偨Y(jié)怎么寫才不會流于形式呢?下面是小編給大家?guī)淼母咭粩?shù)學(xué)難點(diǎn)知識點(diǎn)歸納,以供大家參考!

      高一數(shù)學(xué)難點(diǎn)知識點(diǎn)歸納

      一:集合的含義與表示

      1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個整體。

      把研究對象統(tǒng)稱為元素,把一些元素組成的總體叫集合,簡稱為集。

      2、集合的中元素的三個特性:

      (1)元素的確定性:集合確定,則一元素是否屬于這個集合是確定的:屬于或不屬于。

      (2)元素的互異性:一個給定集合中的元素是的,不可重復(fù)的。

      (3)元素的無序性:集合中元素的位置是可以改變的,并且改變位置不影響集合

      3、集合的表示:{…}

      (1)用大寫字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

      (2)集合的表示方法:列舉法與描述法。

      a、列舉法:將集合中的元素一一列舉出來{a,b,c……}

      b、描述法:

      ①區(qū)間法:將集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合。

      {x?R|x-3>2},{x|x-3>2}

      ②語言描述法:例:{不是直角三角形的三角形}

      ③Venn圖:畫出一條封閉的曲線,曲線里面表示集合。

      4、集合的分類:

      (1)有限集:含有有限個元素的集合

      (2)無限集:含有無限個元素的集合

      (3)空集:不含任何元素的集合

      5、元素與集合的關(guān)系:

      (1)元素在集合里,則元素屬于集合,即:a?A

      (2)元素不在集合里,則元素不屬于集合,即:a¢A

      注意:常用數(shù)集及其記法:

      非負(fù)整數(shù)集(即自然數(shù)集)記作:N

      正整數(shù)集N_或N+

      整數(shù)集Z

      有理數(shù)集Q

      實(shí)數(shù)集R

      高一數(shù)學(xué)函數(shù)知識點(diǎn)總結(jié)

      知識點(diǎn)總結(jié)

      本節(jié)知識包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性和函數(shù)的圖象等知識點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個知識點(diǎn),函數(shù)的圖象就迎刃而解了。

      一、函數(shù)的單調(diào)性

      1、函數(shù)單調(diào)性的定義

      2、函數(shù)單調(diào)性的判斷和證明:(1)定義法 (2)復(fù)合函數(shù)分析法 (3)導(dǎo)數(shù)證明法 (4)圖象法

      二、函數(shù)的奇偶性和周期性

      1、函數(shù)的奇偶性和周期性的定義

      2、函數(shù)的奇偶性的判定和證明方法

      3、函數(shù)的周期性的判定方法

      三、函數(shù)的圖象

      1、函數(shù)圖象的作法 (1)描點(diǎn)法 (2)圖象變換法

      2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

      常見考法

      本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。

      誤區(qū)提醒

      1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。

      2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點(diǎn)問題。

      3、在多個單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號隔開。

      4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對稱,則函數(shù)一定是非奇非偶函數(shù)。

      5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。

      高一數(shù)學(xué)知識點(diǎn)總結(jié)

      一、函數(shù)的概念與表示

      1、映射

      (1)映射:設(shè)A、B是兩個集合,如果按照某種映射法則f,對于集合A中的任一個元素,在集合B中都有唯一的元素和它對應(yīng),則這樣的對應(yīng)(包括集合A、B以及A到B的對應(yīng)法則f)叫做集合A到集合B的映射,記作f:A→B。

      注意點(diǎn):(1)對映射定義的理解。(2)判斷一個對應(yīng)是映射的方法。一對多不是映射,多對一是映射

      2、函數(shù)

      構(gòu)成函數(shù)概念的三要素

      ①定義域②對應(yīng)法則③值域

      兩個函數(shù)是同一個函數(shù)的條件:三要素有兩個相同

      二、函數(shù)的解析式與定義域

      1、求函數(shù)定義域的主要依據(jù):

      (1)分式的分母不為零;

      (2)偶次方根的被開方數(shù)不小于零,零取零次方?jīng)]有意義;

      (3)對數(shù)函數(shù)的真數(shù)必須大于零;

      (4)指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

      三、函數(shù)的值域

      1求函數(shù)值域的方法

      ①直接法:從自變量x的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡單的復(fù)合函數(shù);

      ②換元法:利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;

      ③判別式法:運(yùn)用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

      ④分離常數(shù):適合分子分母皆為一次式(x有范圍限制時要畫圖);

      ⑤單調(diào)性法:利用函數(shù)的單調(diào)性求值域;

      ⑥圖象法:二次函數(shù)必畫草圖求其值域;

      ⑦利用對號函數(shù)

      ⑧幾何意義法:由數(shù)形結(jié)合,轉(zhuǎn)化距離等求值域。主要是含絕對值函數(shù)

      四.函數(shù)的奇偶性

      1.定義:設(shè)y=f(x),x∈A,如果對于任意∈A,都有,則稱y=f(x)為偶函數(shù)。

      如果對于任意∈A,都有,則稱y=f(x)為奇

      函數(shù)。

      2.性質(zhì):

      ①y=f(x)是偶函數(shù)y=f(x)的圖象關(guān)于軸對稱,y=f(x)是奇函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對稱,

      ②若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對稱,則f(0)=0

      ③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關(guān)于原點(diǎn)對稱]

      3.奇偶性的判斷

      ①看定義域是否關(guān)于原點(diǎn)對稱②看f(x)與f(-x)的關(guān)系

      五、函數(shù)的單調(diào)性

      1、函數(shù)單調(diào)性的定義:

      2設(shè)是定義在M上的函數(shù),若f(x)與g(x)的單調(diào)性相反,則在M上是減函數(shù);若f(x)與g(x)的單調(diào)性相同,則在M上是增函數(shù)。

      高一數(shù)學(xué)重要知識點(diǎn)歸納相關(guān)文章:

      高一數(shù)學(xué)知識點(diǎn)小歸納

      高一數(shù)學(xué)重要知識點(diǎn)整理

      高一數(shù)學(xué)重要知識點(diǎn)梳理

      高一數(shù)學(xué)重點(diǎn)知識點(diǎn)

      高一數(shù)學(xué)重要知識點(diǎn)

      高一數(shù)學(xué)必備知識點(diǎn)

      高一數(shù)學(xué)知識點(diǎn)大全

      高一數(shù)學(xué)知識點(diǎn)(考前必看)

      高一數(shù)學(xué)考點(diǎn)知識點(diǎn)總結(jié)

      高中數(shù)學(xué)必修一三角函數(shù)知識點(diǎn)總結(jié)

      1382514