亚洲高清vr播放在线观看,欧美亚洲精品免费,欧美日韩天堂在线视频,午夜福利小视频

      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) > 高一數(shù)學(xué)必備知識點總結(jié)

      高一數(shù)學(xué)必備知識點總結(jié)

      時間: 楚琪0 分享

      高一數(shù)學(xué)必備知識點總結(jié)2022

      總結(jié)在一個時期、一個年度、一個階段對學(xué)習(xí)和工作生活等情況加以回顧和分析的一種書面材料,它可以促使我們思考,不如靜下心來好好寫寫總結(jié)吧。那么如何把總結(jié)寫出新花樣呢?下面是小編給大家?guī)淼母咭粩?shù)學(xué)必備知識點總結(jié),以供大家參考!

      高一數(shù)學(xué)必備知識點總結(jié)

      函數(shù)的概念

      函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應(yīng),那么就稱f:A---B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.

      (1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;

      (2)與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

      函數(shù)的三要素:定義域、值域、對應(yīng)法則

      函數(shù)的表示方法:(1)解析法:明確函數(shù)的定義域

      (2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點等等。

      (3)列表法:選取的自變量要有代表性,可以反應(yīng)定義域的特征。

      4、函數(shù)圖象知識歸納

      (1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上.

      (2)畫法

      A、描點法:B、圖象變換法:平移變換;伸縮變換;對稱變換,即平移。

      (3)函數(shù)圖像平移變換的特點:

      1)加左減右——————只對x

      2)上減下加——————只對y

      3)函數(shù)y=f(x)關(guān)于X軸對稱得函數(shù)y=-f(x)

      4)函數(shù)y=f(x)關(guān)于Y軸對稱得函數(shù)y=f(-x)

      5)函數(shù)y=f(x)關(guān)于原點對稱得函數(shù)y=-f(-x)

      6)函數(shù)y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動得

      函數(shù)y=|f(x)|

      7)函數(shù)y=f(x)先作x≥0的圖像,然后作關(guān)于y軸對稱的圖像得函數(shù)f(|x|)

      高一數(shù)學(xué)知識點通用

      一、指數(shù)函數(shù)

      (一)指數(shù)與指數(shù)冪的運算

      1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

      當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

      當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。

      注意:當是奇數(shù)時,當是偶數(shù)時,

      2.分數(shù)指數(shù)冪

      正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:

      0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義

      指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

      3.實數(shù)指數(shù)冪的運算性質(zhì)

      (二)指數(shù)函數(shù)及其性質(zhì)

      1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.

      注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.

      2、指數(shù)函數(shù)的圖象和性質(zhì)

      【函數(shù)的應(yīng)用】

      1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

      2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:

      方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

      3、函數(shù)零點的求法:

      求函數(shù)的零點:

      1(代數(shù)法)求方程的實數(shù)根;

      2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

      4、二次函數(shù)的零點:

      二次函數(shù).

      1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

      2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

      3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.

      人教版高一數(shù)學(xué)知識點歸納大全

      元素與集合的關(guān)系有“屬于”與“不屬于”兩種。

      集合與集合之間的關(guān)系

      某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ??占侨魏渭系淖蛹侨魏畏强占恼孀蛹?。任何集合是它本身的子集。子集,真子集都具有傳遞性?!赫f明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A?B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A?B。中學(xué)教材課本里將?符號下加了一個≠符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集?!?/p>

      高一數(shù)學(xué)必備知識點總結(jié)相關(guān)文章:

      高一數(shù)學(xué)知識點梳理歸納

      高一數(shù)學(xué)重要知識點梳理

      高一數(shù)學(xué)重要知識點整理

      高一學(xué)年數(shù)學(xué)總知識點復(fù)習(xí)歸納

      高一數(shù)學(xué)必會必考的相關(guān)知識點分析

      高一數(shù)學(xué)知識點總結(jié)期末必備

      高一數(shù)學(xué)知識點復(fù)習(xí)歸納

      高一數(shù)學(xué)知識點總結(jié)2021

      高一數(shù)學(xué)考點知識點總結(jié)

      高中數(shù)學(xué)必修一三角函數(shù)知識點總結(jié)

      1444259