高一上下學(xué)期必須學(xué)會的知識點復(fù)習(xí)大綱
高一上下學(xué)期必須學(xué)會的知識點復(fù)習(xí)大綱
高一的數(shù)學(xué)已經(jīng)不止是打基礎(chǔ)那么簡單了,這時候的內(nèi)容可以直接出現(xiàn)在高考當(dāng)中,所以我們必須學(xué)好這部分內(nèi)容,小編整理了相關(guān)資料,希望能幫助到您。
必修一
第一章:集合和函數(shù)的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就是五分沒了。次一級的知識點就是集合的韋恩圖,會畫圖,集合的“并、補、交、非”也就解決了,還有函數(shù)的定義域和函數(shù)的單調(diào)性、增減性的概念,這些都是函數(shù)的基礎(chǔ)而且不難理解。在第一輪復(fù)習(xí)中一定要反復(fù)去記這些概念,最好的方法是寫在筆記本上,每天至少看上一遍。
第二章:基本初等函數(shù):指數(shù)、對數(shù)、冪函數(shù)三大函數(shù)的運算性質(zhì)及圖像。函數(shù)的幾大要素和相關(guān)考點基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點等等。關(guān)于這三大函數(shù)的運算公式,多記多用,多做一點練習(xí)基本就沒多大問題。函數(shù)圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數(shù)圖像,定義域、值域、零點等等。對于冪函數(shù)還要搞清楚當(dāng)指數(shù)冪大于一和小于一時圖像的不同及函數(shù)值的大小關(guān)系,這也是常考常錯點。另外指數(shù)函數(shù)和對數(shù)函數(shù)的對立關(guān)系及其相互之間要怎樣轉(zhuǎn)化問題也要了解清楚。
第三章:函數(shù)的應(yīng)用。主要就是函數(shù)與方程的結(jié)合。其實就是 的實根,即函數(shù)的零點,也就是函數(shù)圖像與X軸的交點。這三者之間的轉(zhuǎn)化關(guān)系是這一章的重點,要學(xué)會在這三者之間的靈活轉(zhuǎn)化,以求能最簡單的解決問題。關(guān)于證明零點的方法,直接計算加 得必有零點,連續(xù)函數(shù)在x軸上方下方有定義則有零點等等,這是這一章的難點,這幾種證明方法都要記得,多練習(xí)強化。這二次函數(shù)的零點的Δ判別法,這個倒不算難。
必修二
第一章:空間幾何。三視圖和直觀圖的繪制不算難。但是從三視圖復(fù)原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物。這就要求學(xué)生特別是空間感弱的學(xué)生多看書上的例圖,把實物圖和平面圖結(jié)合起來看,先熟練地正推,再慢慢的逆推。有必要的還要在做題時結(jié)合草圖,不能單憑想象。后面的錐體柱體臺體的表面積和體積,把公式記牢問題就不大。做題表求表面積時注意好到底有幾個面,到底有沒有上下底這類問題就可以。
第二章:點、直線、平面之間的位置關(guān)系。這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學(xué)生要多看圖,自己畫草圖的時候要嚴(yán)格注意好實線虛線,這是個規(guī)范性問題。關(guān)于這一章的內(nèi)容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質(zhì),同時能用圖形語言、文字語言、數(shù)學(xué)表達式表示出來。只要這些全部過關(guān)這一章就解決了一大半。這一章的難點在于二面角這個概念,難度在于對這個概念無法理解,即知道有這個概念,但就是無法在二面里面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什么捷徑可走。
第三章:直線與方程。這一章主要講斜率與直線的位置關(guān)系。只要搞清楚直線平行、垂直的斜率表示問題就不大了。需要格外注意的是當(dāng)直線垂直時斜率不存在的情況,這是??键c。另外直線方程的幾種形式,記得一般公式會用就行,要求不高。點與點的距離、點與直線的距離、直線與直線的距離,記住公式,直接套用。
第四章:圓與方程。能熟練的把一般式方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,通常的考試形式是等式的一遍含根號,另一邊不含,這時就要注意開方后定義域或值域的限制;通過點到點的距離、點到直線的距離與圓半徑的大小關(guān)系判斷點與圓、直線與圓、圓與圓的位置關(guān)系。另外注意圓的對稱性引起的相切、相交直線的多種情況,這也是??键c。
高一上下學(xué)期必須學(xué)會的知識點復(fù)習(xí)大綱相關(guān)文章: