有關(guān)初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)梳理
數(shù)學(xué),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學(xué)科,從某種角度看屬于形式科學(xué)的一種。這次小編給大家整理了初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)梳理,供大家閱讀參考。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)梳理
方程與方程組
一元一次方程:
①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。
適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程。
1一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y的0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖象與X軸的交點(diǎn)。也就是該方程的解了。
2一元二次方程的解法
大家知道,二次函數(shù)有頂點(diǎn)式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說(shuō)過(guò)了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解。
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦?,在用直接開(kāi)平方法去求出解。
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解。
(3)公式法
這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a。
3解一元二次方程的步驟:
(1)配方法的步驟:
先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式。
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式。
(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c。
4韋達(dá)定理
利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a,也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用。
5一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書(shū)面上可以寫為“△”,讀作“diao ta”,而△=b2-4ac,這里可以分為3種情況:
I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;
II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;
III當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根(在這里,學(xué)到高中就會(huì)知道,這里有2個(gè)虛數(shù)根)。
不等式與不等式組
不等式:
①用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。
③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。
④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。
不等式的解集:
①能使不等式成立的未知數(shù)的值,叫做不等式的解。
②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
③求不等式解集的過(guò)程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:
①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
②一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
③求不等式組解集的過(guò)程,叫做解不等式組。
一元一次不等式的符號(hào)方向:
在一元一次不等式中,不像等式那樣,等號(hào)是不變的,他是隨著你加或乘的運(yùn)算改變。
在不等式中,如果加上同一個(gè)數(shù)(或加上一個(gè)正數(shù)),不等式符號(hào)不改向;例如:A>B,A+C>B+C;
在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;例如:A>B,A-C>B-C;
在不等式中,如果乘以同一個(gè)正數(shù),不等號(hào)不改向;例如:A>B,A乘以C>B乘以C(C>0);
在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;例如:A>B,A乘以C<b乘以c(c<0)< span="">。
如果不等式乘以0,那么不等號(hào)改為等號(hào),所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。
函數(shù)
變量:
因變量,自變量。
在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
一次函數(shù):
①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。
②當(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。
一次函數(shù)的圖象:
①把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過(guò)原點(diǎn)的一條直線。③在一次函數(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。④當(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。
數(shù)學(xué)考試拿高分的竅門
一、對(duì)照法
如何正確理解和運(yùn)用數(shù)學(xué)概念?小學(xué)數(shù)學(xué)常用的方法就是對(duì)照法。根據(jù)數(shù)學(xué)題意,對(duì)照概念、性質(zhì)、定律、法則、公式、名詞、術(shù)語(yǔ)的含義和實(shí)質(zhì),依靠對(duì)數(shù)學(xué)知識(shí)的理解、記憶、辨識(shí)、再現(xiàn)、遷移來(lái)解題的方法叫做對(duì)照法。
二、公式法
運(yùn)用定律、公式、規(guī)則、法則來(lái)解決問(wèn)題的方法。它體現(xiàn)的是由一般到特殊的演繹思維。公式法簡(jiǎn)便、有效,也是小學(xué)生學(xué)習(xí)數(shù)學(xué)必須學(xué)會(huì)和掌握的一種方法。但一定要讓學(xué)生對(duì)公式、定律、規(guī)則、法則有一個(gè)正確而深刻的理解,并能準(zhǔn)確運(yùn)用。
三、比較法
通過(guò)對(duì)比數(shù)學(xué)條件及問(wèn)題的異同點(diǎn),研究產(chǎn)生異同點(diǎn)的原因,從而發(fā)現(xiàn)解決問(wèn)題的方法,叫比較法。
四、分類法
根據(jù)事物的共同點(diǎn)和差異點(diǎn)將事物區(qū)分為不同種類的方法,叫做分類法。分類是以比較為基礎(chǔ)的。依據(jù)事物之間的共同點(diǎn)將它們合為較大的類,又依據(jù)差異點(diǎn)將較大的類再分為較小的類。 分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復(fù)、不遺漏、不交叉。
怎樣才能學(xué)好數(shù)學(xué)
1.打破沙鍋問(wèn)到底的執(zhí)著和溫故知新的毅力,被某個(gè)知識(shí)點(diǎn)或者某道題難住,就把它擱置,問(wèn)題越來(lái)越多就積重難返了。
2.不會(huì)的問(wèn)題當(dāng)即解決最好,解決的方法有查資料或者請(qǐng)教他人等;對(duì)已經(jīng)解決的問(wèn)題和重要知識(shí)點(diǎn),要定期復(fù)習(xí),復(fù)習(xí)時(shí)要思考有無(wú)更好的方法。
3.學(xué)會(huì)一題多解,從各個(gè)方面來(lái)了解題目的含義,鍛煉孩子的變式思維;要敢于創(chuàng)新,老師可在講課過(guò)程中故意出錯(cuò),讓學(xué)生來(lái)思考,矯正,使學(xué)生處于主動(dòng)思考的狀態(tài)。
有關(guān)初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)梳理相關(guān)文章:
★ 初中數(shù)學(xué)知識(shí)點(diǎn)整理
★ 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
★ 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 初中數(shù)學(xué)圓的知識(shí)點(diǎn)歸納
★ 初中部數(shù)學(xué)學(xué)習(xí)方法總結(jié)
★ 初中數(shù)學(xué)三角形知識(shí)點(diǎn)歸納