亚洲高清vr播放在线观看,欧美亚洲精品免费,欧美日韩天堂在线视频,午夜福利小视频

      學習啦 > 學習方法 > 初中學習方法 > 初二學習方法 > 八年級數(shù)學 >

      初中八年級下冊數(shù)學期中試卷

      時間: 詩盈1200 分享

        數(shù)學起源于人類早期的生產(chǎn)活動,古巴比倫人從遠古時代開始已經(jīng)積累了一定的數(shù)學知識,并能應用實際問題,今天小編就給大家分享一下八年級數(shù)學,一起來參考吧

        初中八年級下數(shù)學期中試卷

        一、選擇題(本大題共8小題,每小題2分,共16分)

        1.(2分)下列汽車的徽標中,是中心對稱圖形的是(  )

        A. B. C. D.

        2.(2分)下列運算正確的是(  )

        A.a3•a2=a6 B.a12÷a3=a4 C.a2+b2=(a+b)2 D.(a2)3=a6

        3.(2分)下列調(diào)查適合普查的是(  )

        A.了解一批燈泡的使用壽命

        B.了解“長征三號丙運載火箭”零部件的狀況

        C.了解“朗讀者”的收視率

        D.了解公民保護環(huán)境的意識

        4.(2分)下列條件中,不能判定四邊形ABCD是平行四邊形的是(  )

        A.AB=CD,AD=BC B.AB∥CD,∠B=∠D C.AB∥CD,AD=BC D.AB∥CD,AB=CD

        5.(2分)一只不透明的袋子中裝有4個黑球和2個白球,每個球除顏色外都相同,將球搖勻,從中任意摸出三個球,下列事件是必然事件的是(  )

        A.摸出的三個球中至少有一個黑球

        B.摸出的三個球中至少有一個白球

        C.摸出的三個球中至少有兩個黑球

        D.摸出的三個球中至少有兩個白球

        6.(2分)如圖,在四邊形ABCD中,E、F、G、H分別是AB、BD、CD、AC的中點,要使四邊形EFGH是菱形,四邊形ABCD需要滿足的條件是(  )

        A.AB∥CD B.AC⊥BD C.AD=BC D.AC=BD

        7.(2分)如圖,將△ABC按逆時針方向旋轉(zhuǎn)130°得到△AB′C,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為(  )

        A.95° B.100° C.105° D. 110°

        8.(2分)我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標系中,邊長為2的正方形ABCD的邊AB在x軸上,AB的中點是坐標原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D′處,則點C的對應點C′的坐標為(  )

        A.( ,1) B.(2,1) C.(1, ) D.(2, )

        二、填空題(共8小題,每小題2分,滿分16分)

        9.(2分)計算:20=   , =   .

        10.(2分)分解因式:a2b﹣b3=   .

        11.(2分)‘同時拋擲兩枚質(zhì)地均勻的骰子,向上一面的點數(shù)之和是13’這一事件是   .(填‘必然事件’、‘不可能事件’、‘隨機事件’)

        12.(2分)如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE⊥BD,垂足為點E,若∠EAC=2∠CAD,則∠BAE=   度.

        13.(2分)菱形的邊長為2,一個內(nèi)角等于120°,則這個菱形的面積為   .

        14.(2分)從一副撲克牌中拿出6張:3張“J”、2張“Q”、1張“K”,洗勻后將它們背面朝上.從中任取1張,恰好取出   的可能性最大(填“J”或“Q”或“K”).

        15.(2分)如圖,已知正方形ABCD的邊長為3,E、 F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長為   .

        16.(2分)如圖,在▱ABCD中,AB=2,BC=3,∠ABC=60°,對角線AC與BD交于點O,將直線l繞點O按順時針方向旋轉(zhuǎn),分別交AD、BC于點E、F,則四邊形ABFE周長的最小值是   .

        三、解答題(本大題共10小題,共68分)

        17.(4分)計算:22+|﹣1|+

        18.(5分)先化簡,再求值:2(3a2b﹣ab2)﹣(﹣ab2+2a2b),其中a=2,b=﹣1.

        19.(5分)解方程組

        20.(6分)在一個不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共20只.某學習小組做摸球?qū)嶒?,將球攪勻后從中隨機摸出一個球幾下顏 色,再把它放回袋中,不斷重復上述過程,下表是活動進行中的一組統(tǒng)計數(shù)據(jù):

        摸球的次數(shù)n 100 150 200 500 800 1000

        摸到白球的次數(shù)m 58 96 116 295 484 601

        摸到白球的頻率     0.64 0.58     0.605 0.601

        (1)請將表中的數(shù)據(jù)補充完整.

        (2)請估計:當n很大時,摸到白球的概率約是   .(精確到0.01)

        21.(8分)如圖,在▱ABCD中,BE平分∠ABC,交AD于點E,F(xiàn)是BC上一點,且CF=AE,連接DF.

        (1)求證DF∥BF;

        (2)若∠ABC=70°,求∠CDF的度數(shù).

        22.(6分)初中生進入到八年級學習階段,在數(shù)學學習上往往會出現(xiàn)比較明顯的兩級 分化現(xiàn)象.某區(qū)教委對部分學校的七年級學生對待學習的態(tài)度進行了一次抽樣調(diào)查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).

        請根據(jù)圖中提供的信息,解答下列問題:

        (1)此次抽樣調(diào)查中,共調(diào)查了   名學生;

        (2)并將圖①補充完整;

        (3)求出圖中C級所占的圓心角的度數(shù).

        23.(8分)數(shù)學課上,老師要求同學們用直尺和圓規(guī)作出一個菱形.

        (1)證明小麗作出的四邊形ABDC是菱形;

        (2)請你按照老師的要求再用一種不同于小麗的方法作一個菱形.(保留作圖痕跡,不寫作法)

        小麗的方法:

        (1)作線段BC

        (2)作BC的垂直平分線l,交BC于點O;

        (3)在直線l上,且在點O的兩側(cè)分別取點A、點D,使OA=OD;

        (4)順次連接A、B、C、D.則四邊形ABDC為所求作菱形.

        24.(8分)如圖所示,△ABC中,D是BC邊上一點,E是AD的中點,過點A作BC的平行線交CE的延長線于F,且AF=BD,連接BF.

        (1)求證:D是BC的中點;

        (2)若AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

        25.(8分)在矩形紙片ABCD中,AB=6,BC=8,現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,連接DF.

        (1)說明△BEF是等腰三角形;

        (2)折痕EF的長為   .

        26.(10分)數(shù)學概念

        我們把對角線相等的四邊形稱為等對角線四邊形.

        回憶舊知

        (1)在我們學習過的四邊形中,找出一個等對角線四邊形,寫出它的名稱.

        知識運用

        (2)已知四邊形ABCD是等對角線四邊形,圖①中四邊形EFGH的四個頂點分別是四邊形ABCD四條邊的中點,圖②中四邊形KLMN的邊KL∥MN∥AC,邊ML∥NK∥BD,則

        A.四邊形EFGH、KLMN都是等對角線四邊形

        B.四邊形EFGH、KLMN都不是等對角線四邊形

        C.四邊形EFGH是等對角線四邊形,四邊形KLMN不是等對角線四邊形

        D.四邊形EFG H不是等對角線四邊形,四邊形KLMN是等對角線四邊形

        概念證明

        (3)規(guī)定:一組對邊平行且不相等,另一組對邊相等的四邊形為“等腰梯形”,請嘗試證明等腰梯形是等對角線四邊形.

        已知:如圖③,在等腰梯形ABCD中,AD∥BC,AD≠BC,AB=CD.

        求證:等腰梯形ABCD是等對角線四邊形.

        類比遷移

        在七年級(下)學習三角形的時候,我們曾用來揭示三角形和一些特殊三角形之間的關系:

        (4)請用類似的方法揭示四邊形、等對角線四邊形、平行四邊形、矩形、正方形、等腰梯形之間的關系.

        2017-2018學年江蘇省南京市秦淮區(qū)八年級(下)期中數(shù)學試卷

        參考答案與試題解析

        一、選擇題(本大題共8小題,每小題2分,共16分)

        1.(2分)下列汽車的徽標中,是中心對稱圖形的是(  )

        A. B. C. D.

        【解答】解:根據(jù)中心對稱圖形的概念,知:

        A是中心對稱圖形,符合題意;

        B、C、D不是中心對稱圖形,不符合題意.

        故選:A.

        2.(2分)下列運算正確的是(  )

        A.a3•a2=a6 B.a12÷a3=a4 C.a2+b2=(a+b)2 D.(a2)3=a6

        【解答】解:A、a3•a2=a5,故此選項錯誤;

        B、a12÷a3=a9,故此選項錯誤;

        C、a2+b2,無法計算,故此選項錯誤;

        D、(a2)3=a6,故此選項正確;

        故選:D.

        3.(2分)下列調(diào)查適合普查的是(  )

        A.了解一批燈泡的使用壽命

        B.了解“長征三號丙運載火箭”零部件的狀況

        C.了解“朗讀者”的收視率

        D.了解公民保護環(huán)境的意識

        【解答】解:A、了解一批燈泡的使用壽命,適合抽樣調(diào)查,故此選項錯誤;

        B、了解“長征三號丙運載火箭”零部件的狀況,適合全面調(diào)查,故此選項正確;

        C、了解“朗讀者”的收視率,適合抽樣調(diào)查,故此選項錯誤;

        D、了解公民保護環(huán)境的意識,適合抽樣調(diào)查,故此選項錯誤;

        故選:B.

        4.(2分)下列條件中,不能判定四邊形ABCD是平行四邊形的是(  )

        A.AB=CD,AD=BC B.AB∥CD,∠B=∠D C.A B∥CD,AD=BC D.AB∥CD,AB=CD

        【解答】解:A、∵AB=CD,AD=BC,

        ∴四邊形ABCD是平行四邊形,

        故A可以判斷四邊形ABCD是平行四邊形;

        B、∵AB∥CD,∴∠B+∠C=180°,

        ∵∠B=∠D,

        ∴∠D+∠C=180°,

        ∴AC∥BD,

        ∴四邊形ABCD是平行四邊形,

        故B可以判斷四邊形ABCD是平行四邊形;

        C、∵AB∥CD,AD=BC,

        ∴四邊形ABCD可能是平行四邊形,有可能是等腰梯形.

        故C不可以判斷四邊形ABCD是平行四邊形

        D、∵AB∥CD,AB=CD,

        ∴四邊形ABCD是平行四邊形,

        故D可以判斷四邊形ABCD是平行四邊形;

        故選:C.

        5.(2分)一只不透明的袋子中裝有4個黑球和2個白球,每個球除顏色外都相同,將球搖勻,從中任意摸出三個球,下列事件是必然事件的是(  )

        A.摸出的三個球中至少有一個黑球

        B.摸出的三個球中至少有一個白球

        C.摸出的三個球中至少有兩個黑球

        D.摸 出的三個球中至少有兩個白球

        【解答】解:一只不透明的袋子中裝有4個黑球和2個白球,每個球除顏色外都相同,將球搖勻,從中任意摸3個球,至少有一個球是黑球的事件是必然事件.

        故選:A.

        6.(2分)如圖,在四邊形ABCD中,E、F、G、H分別是AB、BD、CD、AC的中點,要使四邊形EFGH是菱形,四邊形ABCD需要滿足的條件是(  )

        A.AB∥CD B.AC⊥BD C.AD=BC D.AC=BD

        【解答】解:還應滿足AD=BC.

        理由如下:∵E,F(xiàn)分別是AB,BD的中點,

        ∴EF∥AD且EF= AD,

        同理可得:GH∥AD且GH= AD,EH∥BC且EH= BC,

        ∴EF∥GH且EF=GH,

        ∴四邊形EFGH是平行四邊形,

        ∵AD=BC,

        ∴ AD= BC,

        即EF=EH,

        ∴▱EFGH是菱形.

        故選:C.

        7.(2分)如圖,將△ABC按逆時針方向旋轉(zhuǎn)130°得到△AB′C,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為(  )

        A.95° B.100° C.105° D.110°

        【解答】解:∵△ABC按逆時針方向旋轉(zhuǎn)130°得到△AB′C,

        ∴BA=B′A,∠BAB′=∠CAC′=130°,

        ∴∠AB′B=∠ABB′= (180°﹣130°)=25°,

        ∵AC′∥BB′,

        ∴∠C′AB′=∠AB′B=25°,

        ∴∠CAB′=∠CAC′﹣∠CAB′=130°﹣25°=105°.

        故選:C.

        8.(2分)我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標系中,邊長為2的正方形ABCD的邊AB在x軸上,AB的中點是坐標原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D′處,則點C的對應點C′的坐標為(  )

        A.( ,1) B.(2,1) C.(1, ) D.(2, )

        【解答】解:∵AD′=AD=2,

        AO= AB=1,

        ∴OD′= = ,

        ∵C′D′=2,C′D′∥AB,

        ∴C′(2, ),

        故選:D.

        二、填空題(共8小題,每小題2分,滿分16分)

        9.(2分)計算:20= 1 , = 2 .

        【解答】解:20=1,

        =2

        故答案為:1,2

        10.(2分)分解因式:a2b﹣b3= b(a+b)(a﹣b) .

        【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b),

        故答案為:b(a+b)(a﹣b)

        11.(2分)‘同時拋擲兩枚質(zhì)地均勻的骰子,向上一面的點數(shù)之和是13’這一事件是 不可能事件 .(填‘必然事件’、‘不可能事件’、‘隨機事件’)

        【解答】解:同時拋擲兩枚質(zhì)地均勻的骰子,向上一面的點數(shù)之和是13,是不可能事件.

        故答案為:不可能.

        12.(2分)如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE⊥BD,垂足為點E,若∠EAC=2∠CAD,則∠BAE= 22.5 度.

        【解答】解:∵四邊形ABCD是矩形,

        ∴AC=BD,OA=OC,OB=OD,

        ∴OA=OB═OC,

        ∴∠OAD=∠ODA,∠OAB=∠OBA,

        ∴∠AOE=∠OAD+∠ODA=2∠OAD,

        ∵∠EAC=2∠CAD,

        ∴∠EAO=∠AOE,

        ∵AE⊥BD,

        ∴∠AEO=90°,

        ∴∠AOE=45°,

        ∴∠OAB=∠OBA= =67.5°,

        ∴∠BAE=∠OAB﹣∠OAE=22.5°.

        故答案為22.5°.

        13.(2分)菱形的邊長為2,一個內(nèi)角等于120°,則這個菱形的面積為 2  .

        【解答】解:作AE⊥BC于E,如圖所示:

        ∵四邊形ABCD是菱形,

        ∴AB=BC=2,

        ∴AE=AB•sinB=2×sin60°=2× = ,

        ∴菱形的面積S=BC•AE=2× =2 .

        故答案為2 .

        14.(2分)從一副撲克牌中拿出6張:3張“J”、2張“Q”、1張“K”,洗勻后將它們背面朝上.從中任取1張,恰好取出 J 的可能性最大(填“J”或“Q”或“K”).

        【解答】解:∵從一副撲克牌中拿出6張:3張“J”、2張“Q”、1張“K”,洗勻后將它們背面朝上,

        ∴從中任取1張,得到“J”的概率為: = ,從中任取1張,得到“Q”的概率為: = ,

        從中任取1張,得到“K”的概率為: ,

        ∴從中任取1張,恰好取出J的可能性最大.

        故答案為:J.

        15.(2分)如圖,已知正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長為   .

        【解答】解:∵△DAE逆時針旋轉(zhuǎn)90°得到△DCM,

        ∴∠FCM=∠FCD+∠DCM=180°,

        ∴F、C、M三點共線,

        ∴DE=DM,∠EDM=90°,

        ∴∠EDF+∠FDM=90°,

        ∵∠EDF=45°,

        ∴∠FDM=∠EDF=45°,

        在△DEF和△DMF中,

        ,

        ∴△DEF≌△DMF(SAS) ,

        ∴EF=MF,

        設EF=MF=x,

        ∵AE=CM=1,且BC=3,

        ∴BM=BC+CM=3+1=4,

        ∴BF=BM﹣MF=BM﹣EF=4﹣x,

        ∵EB=AB﹣AE=3﹣1=2,

        在Rt△EBF中,由勾股定理得EB2+BF2=EF2,

        即22+(4﹣x)2=x2,

        解得:x= ,

        ∴FM= .

        故答案為: .

        16.(2分)如圖,在▱ABCD中,AB=2,BC=3,∠ABC=60°,對角線AC與BD交于點O,將直線l繞點O按順時針方向旋轉(zhuǎn),分別交AD、BC于點E、F,則四邊形ABFE周長的最小值是 5+  .

        【解答】解:作AM⊥BC于M,如圖,

        ∵∠ABC=60°,

        ∴BM= AB=1,AM= BM= ,

        ∵四邊形ABCD為平行四邊形,

        ∴OA=OC,AD∥CB,

        ∴∠EAO=∠FCO,

        在△AOE和△COF中

        ,

        ∴△AOE≌△COF,

        ∴AE=CF,

        ∴四邊形ABFE周長=AB+BF+EF+AE=AB+BF+FC+EF=AB+BC+EF=5+EF,

        當EF的值最小時,四邊形ABFE周長有最小值,此時EF⊥BC,即EF的最小值為 ,

        ∴四邊形ABFE周長的最小值是5+ .

        故答案為5+ .

        三、解答題(本大題共10小題,共68分)

        17.(4分)計算:22+|﹣1|+

        【解答】解:原式=4+1+3

        =8.

        18.(5分)先化簡,再求值:2(3a2b﹣ab2)﹣(﹣ab2+2a2b),其中a=2,b=﹣1.

        【解答】解:當a=2,b=﹣1時,

        原式=6a2b﹣2ab2+ab2﹣2a2b

        =4a2b﹣ab2

        =4×4×(﹣1)﹣2×1

        =﹣16﹣2

        =﹣18

        19.(5分)解方程組

        【解答】解: ,

       ?、?times;3,得:3x+9y=﹣3 ③,

       ?、郓仮?,得:11y=﹣11,

        解得:y=﹣1,

        將y=﹣1代入①,得:x﹣3=﹣1,

        解得:x=2,

        則方程組的解為 .

        20.(6分)在一個不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共20只.某學習小組做摸球?qū)嶒?,將球攪勻后從中隨機摸出一個球幾下顏色,再把它放回袋中,不斷重復上述過程,下表是活動進行中的一組統(tǒng)計數(shù)據(jù):

        摸球的次數(shù)n 100 150 200 500 800 1000

        摸到白球的次數(shù)m 58 96 116 295 484 601

        摸到白球的頻率  0.58  0.64 0.58  0.59  0.605 0.601

        (1)請將表中的數(shù)據(jù)補充完整.

        (2)請估計:當n很大時,摸到白球的概率約是 0.60 .(精確到0.01)

        【解答】解:(1)填表如下:

        摸球的次數(shù)n 100 150 200 500 800 1000

        摸到白球的次數(shù)m 58 96 116 295 484 601

        摸到白球的頻率 0.58 0.64 0.58 0.59 0.605 0.601

        故答案為:0.58,0.59;

        (2)當n很大時,摸到白球的概率約是0.60,

        故答案為:0.60.

        21.(8分)如圖,在▱ABCD中,BE平分∠ABC,交AD于點E,F(xiàn)是BC上一點,且CF=AE,連接DF.

        (1)求證DF∥BF;

        (2)若∠ABC=70°,求∠CDF的度數(shù).

        【解答】(1)證明:∵四邊形ABCD是平行四邊形,

        ∴AD=BC,AD∥BC,

        ∵CF=AE,

        ∴DE=BF,∵DE∥BF,

        ∴四邊形BEDF是平行四邊形,

        ∴DF∥BE.

        (2)∵四邊形ABCD是平行四邊形,

        ∴∠ABC=∠ADC=70°,

        ∵BE平分∠ABC,

        ∴∠EBF= ∠ABC=35°,

        ∵四邊形BEDF是平行四邊形,

        ∴∠EBF=∠EDF=35°,

        ∴∠CDF=∠ADC﹣∠ EDF=35°.

        22.(6分)初中生進入到八年級學習階段,在數(shù)學學習上往往會出現(xiàn)比較明顯的兩級分化現(xiàn)象.某區(qū)教委對部分學校的七年級學生對待學習的態(tài)度進行了一次抽樣調(diào)查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).

        請根據(jù)圖中提供的信息,解答下列問題:

        (1)此次抽樣調(diào)查中,共調(diào)查了 200 名學生;

        (2)并將圖①補充完整;

        (3)求出圖中C級所占的圓心角的度數(shù).

        【解答】解:(1)此次調(diào)查的學生總?cè)藬?shù)為50÷25%=200人,

        故答案為:200;

        (2)∵C層級的百分比為1﹣25%﹣60%=15%,

        ∴C層級的人數(shù)為200×15%=30人,

        補全條形圖如下:

        (3)圖中C級所占的圓心角的度數(shù)為360°×15%=54°.

        23.(8分)數(shù)學課上,老師要求同學們用直尺和圓規(guī)作出一個菱形.

        (1)證明小麗作出的四邊形ABDC是菱形;

        (2)請你按照老師的要求再用一種不同于小麗的方法作一個菱形.(保留作圖痕跡,不寫作法)

        小麗的方法:

        (1)作線段BC

        (2)作BC的垂直平分線l,交BC于點O;

        (3)在直線l上,且在點O的兩側(cè)分別取點A、點D,使OA=OD;

        (4)順次連接A、B、C、D.則四邊形ABDC為所求作菱形.

        【解答】(1)證明:∵BO=OC,AO=OD,

        ∴四邊形ABDC是平行四邊形,

        ∵AD⊥BC,

        ∴四邊形ABDC是菱形;

        (2)菱形ABDC如圖所示:

        24.(8分 )如圖所示,△ABC中,D是BC邊上一點,E是AD的中點,過點A作BC的平行線交CE的延長線于F,且AF=BD,連接BF.

        (1)求證:D是BC的中點;

        (2)若AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

        【解答】(1)證明:∵AF∥BC,

        ∴∠AFE=∠DCE,

        ∵點E為AD的中點,

        ∴AE=DE,

        在△AEF和△DEC中,

        ,

        ∴△AEF≌△DEC(AAS),

        ∴AF=CD,

        ∵AF=BD,

        ∴CD=BD,

        ∴D是BC的中點;

        (2)解:若AB=AC,則四邊形AFBD是矩形.理由如下:

        ∵△AEF≌△DEC,

        ∴AF=CD,

        ∵AF=BD,

        ∴CD=BD;

        ∵AF∥BD,AF= BD,

        ∴四邊形AFBD是平行四邊形,

        ∵AB=AC,BD=CD,

        ∴∠ADB=90°,

        ∴平行四邊形AFBD是矩形.

        25.(8分)在矩形紙片ABCD中,AB=6,BC=8,現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,連接DF.

        (1)說明△BEF是等腰三角形;

        (2)折痕EF的長為   .

        【解答】解:(1)∵現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,

        ∴∠DEF=∠BEF,

        ∵四邊形ABCD是矩形,

        ∴AD∥BC,

        ∴∠DEF=∠BFE,

        ∴∠BEF=∠BFE,

        ∴BE=BF,

        即△BEF是等腰三角形;

        (2)過E作EM⊥BC于M,則四邊形ABME是矩形,

        所以EM=AB=6,AE=BM,

        ∵現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,

        ∴DE=BE,DO=BO,BD⊥EF,

        ∵四邊形ABCD是矩形,BC=8,

        ∴AD=BC=8,∠BAD=90°,

        在Rt△ABE中,AE2+AB2=BE2,

        即(8﹣BE)2+62=BE2,

        解得:BE= =DE=BF,

        AE=8﹣DE=8﹣ = =BM,

        ∴FM= ﹣ = ,

        在Rt△EMF中,由勾股定理得:EF= = ,

        故答案為: .

        26.(10分)數(shù)學概念

        我們把對角線相等的四邊形稱為等對角線四邊形.

        回憶舊知

        (1)在我們學習過的四邊形中,找出一個等對角線四邊形,寫出它的名稱.

        知識運用

        (2)已知四邊形ABCD是等對角線四邊形,圖①中四邊形EFGH的四個頂點分別是四邊形ABCD四條邊的中點,圖②中四邊形KLMN的邊KL∥MN∥AC,邊ML∥NK∥BD,則 B

        A.四邊形EFGH、KLMN都是等對角線四邊形

        B.四邊形EFGH、KLMN都不是等對角線四邊形

        C.四邊形EFGH是等對角線四邊形,四邊形KLMN不是等對角線四邊形

        D.四邊形EFGH不是等對角線四邊形,四邊形 KLMN是等對角線四邊形

        概念證明

        (3)規(guī)定:一組對邊平行且不相等,另一組對邊相等的四邊形為“等腰梯形”,請嘗試證明等腰梯形是等對角線四邊形.

        已知:如圖③,在等腰梯形ABCD中,AD∥BC,AD≠BC,AB=CD.

        求證:等腰梯形ABCD是等對角線四邊形.

        類比遷移

        在七年級(下)學習三角形的時候,我們曾用來揭示三角形和一些特殊三角形之間的關系:

        (4)請用類似的方法揭示四邊形、等對角線四邊形、平行四邊形、矩形、正方形、等腰梯形之間的關系.

        【解答】解:(1)在我們學習過的四邊形中,矩形屬于等對角線四邊形.

        (2)∵四邊形ABCD是等對角線四邊形,

        ∴AC=BD,

        又∵圖①中四邊形EFGH的四個頂點分別是四邊形ABCD四條邊的中點,圖②中四邊形KLMN的邊KL∥MN∥AC,邊ML∥NK∥BD,

        ∴四邊形EFGH是菱形,四邊形KLMN是菱形,

        ∴四邊形EFGH、KLMN都不是等對角線四邊形,

        故選:B;

        (3)證明:過點D作DE∥AB,交BC于點E.

        ∴∠ABE=∠DEC,

        ∵AD∥BC,

        ∴四邊形ABED是平行四邊形,

        ∴AB=DE,

        又∵AB=DC,

        ∴DE=DC,

        ∴∠DCE=∠DEC,

        ∴∠ABE=∠DCE,即∠ABC=∠DCB,

        ∵AD∥BC,

        ∴∠BAD+∠ABC=180°,∠CDA+∠DCB=180°,

        ∵∠ABC=∠DCB,

        ∴∠BAD=∠CDA,

        在△ABC和△DCB中,

        ,

        ∴△ABC≌△DCB(SAS),

        ∴AC=BD.

        方法二:

        證明:分別過點A、D作AE⊥BC于點E、DF⊥BC于點F.

        ∴∠AEF=∠DFC=90°,

        ∴AE∥DF,

        ∵AD∥BC,

        ∴四邊形AEFD是平行四邊形,

        ∴AE=DF,

        在Rt△ABE和Rt△DCF中,

        ,

        ∴Rt△ABE≌Rt△DCF(HL),

        ∴∠ABE=∠DCF,即∠ABC=∠DCB,

        ∵AD∥BC,

        ∴∠BAD+∠ABC=180°,∠CDA+∠DCB=180°,

        ∵∠ABC=∠DCB,

        ∴∠BAD=∠CDA,

        在△ABC和△DCB中,

        ,

        ∴△ABC≌△DCB(SAS),

        ∴AC=BD.

        (4)四邊形、等對角線四邊形、平行四邊形、矩形、正方形、等腰梯形之間的關系,如圖所示.

        八年級數(shù)學下期中考試題參考

        一、選擇題(本大題共10小題,每小題3分,共30分)

        1.(3分)方程x(x﹣2)=3x的解為(  )

        A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5

        2.(3分)在一次中學生田徑運動會上,參加男子跳高的15名運動員的成績?nèi)缦卤硭荆?/p>

        成績/m 1.50 1.60 1.65 1.70 1.75 1.80

        人數(shù) 2 3 2 3 4 1

        則這些運動員成績的中位數(shù)、眾數(shù)分別為(  )

        A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70

        3.(3分)不能判定四邊形ABCD為平行四邊形的條件是(  )

        A.AB∥CD,AD=BC B.AB∥CD,∠A=∠C C.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D

        4.(3分)實數(shù)a,b在數(shù)軸上對應點的位置如圖所示,化簡|a|+ 的結(jié)果是(  )

        A.﹣2a+b B.2a﹣b C.﹣b D.b

        5.(3分)如圖,在平行四邊形ABCD中,都不一定成立的是(  )

        ①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.

        A.①和④ B.②和③ C.③和④ D.②和④

        6.(3分)若關于x的方程mx2﹣mx+2=0有兩個相等的實數(shù)根,則m的值為(  )

        A.0 B.8 C.4或8 D.0或8

        7.(3分)利用反證法證明“直角三角形至少有一個銳角不小于45°”,應先假設(  )

        A.直角三角形的每個銳角都小于45°

        B.直角三角形有一個銳角大于45°

        C.直角三角形的每個銳角都大于45°

        D.直角三角形有一個銳角小于45°

        8.(3分)如圖,EF過▱ABCD對角線的交點O,交AD于E,交BC于F,若▱ABCD的周長為18,OE=1.5,則四邊形EFCD的周長為(  )

        A.14 B.13 C.12 D.10

        9.(3分)摩拜共享單車計劃2017年10、11、12月連續(xù)3月對深圳投放新型摩拜單車,計劃10月投放深圳3000臺,12月投放6000臺,每月按相同的增長率投放,設增長率為x,則可列方程(  )

        A.3000(1+x)2=6000

        B.3000(1+x)+3000(1+x)2=6000

        C.3000(1﹣x)2=6000

        D.3000+3000(1+x)+3000(1+x)2=6000

        10.(3分)如圖,△ABC中,D是AB的中點,E在AC上,且∠AED=90°+ ∠C,則BC+2AE等于(  )

        A.AB B.AC C. AB D. AC

        二、填空題(本大題共8小題,每小題3分,共24分)

        11.(3分)計算:( + )× =   .

        12.(3分)已知一組數(shù)據(jù):3,3,4,5,5,則它的方差為   .

        13.(3分)已知x2+6x=﹣1可以配成(x+p)2=q的形式,則q=   .

        14.(3分)某公司前年繳稅200萬元,今年繳稅338萬元,則該公司這兩年繳稅的年均增長率為   .

        15.(3分)如圖,Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分別為AC、AB的中點,連接DE,則△ADE的面積是   .

        16.(3分)如圖,在▱ABCD中,∠D=100°,∠DAB的平分線AE交DC于點E,連接BE.若AE=AB,則∠EBC的度數(shù)為   .

        17.(3分)如圖,四邊形ABCD中,點M、N分別在AB、BC上,將△BMN沿MN翻折,得△FMN,若MF∥AD,F(xiàn)N∥DC,則∠D的度數(shù)為   °.

        18.(3分)如圖,在△ABC中,∠BAC=90°,AB=4,AC=6,點D、E分別是BC、AD的中點,AF∥BC交CE的延長線于F.則四邊形AFBD的面積為   .

        三、解答題(本大題共7小題,19-23每題6分,24-25每題8分,共46分)

        19.(6分)計算:

        (1)3 ﹣ ﹣

        (2) (2 +4 ﹣3 )

        20.(6分)解方程:

        (1)3(x﹣1)2=x(x﹣1)

        (2)x2+1=3x.

        21.(6分)為了從甲、乙兩人中選拔一人參加射擊比賽,現(xiàn)對他們的射擊成績進行了測試,5次打靶命中的環(huán)數(shù)如下:

        甲:8,7,9,8,8;乙:9,6,10,8,7;

        (1)將下表填寫完整:

        平均數(shù) 中位數(shù) 方差

        甲     8

        乙 8     2

        (2)根據(jù)以上信息,若你是教練,你會選擇誰參加射擊比賽,理由是什么?

        (3)若乙再射擊一次,命中8環(huán),則乙這六次射擊成績的方差會   .(填“變大”或“變小”或“不變”)

        22.(6分)某化肥廠去年四月份生產(chǎn)化肥500噸,因管理不善,五月份的產(chǎn)量減少了10%,從六月起強化管理,該廠產(chǎn)量逐月上升,七月份產(chǎn)量達到648噸.

        (1)該廠五月份的產(chǎn)量為   噸;(直接填結(jié)果)

        (2)求六、七兩月產(chǎn)量的平均增長率.

        23.(6分)如圖,點B、E、C、F在一條直線上,AB=DF,AC=DE,BE=FC.

        (1)求證:△ABC≌△DFE;

        (2)連接AF、BD,求證:四邊形ABDF是平行四邊形.

        24.(8分)△ABC的中線BD,CE相交于O,F(xiàn),G分別是BO,CO的中點,求證:EF∥DG,且EF=DG.

        25.(8分)如圖是一個多邊形,你能否用一直線去截這個多邊形,使得到的新多邊形分別滿足下列條件:(畫出圖形,把截去的部分打上陰影)

       ?、傩露噙呅蝺?nèi)角和比原多邊形的內(nèi)角和增加了180°.

       ?、谛露噙呅蔚膬?nèi)角和與原多邊形的內(nèi)角和相等.

       ?、坌露噙呅蔚膬?nèi)角和比原多邊形的內(nèi)角和減少了180°.

        (2)將多邊形只截去一個角,截后形成的多邊形的內(nèi)角和為2520°,求原多邊形的邊數(shù).

        四、附加題(本題有2小題,每題10分,共20分)

        26.(10分)如圖所示中的幾個圖形是五角星和它的變形.

        (1)圖甲中是一個五角星形狀,求證:∠A+∠B+∠C+∠D+∠E=180°;

        (2)圖甲中的點A向下移到BE上時(如圖乙)五個角的和(即∠CAD+∠B+∠C+∠D+∠E)有無變化?試說明理由

        (3)把圖乙中的點C向上移動到BD上時(如圖丙所示),五個角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有無變化?試說明理由.

        27.(10分)如圖,四邊形ABCD為平行四邊形,E為AD上的一點,連接EB并延長,使BF=BE,連接EC并延長,使CG=CE,連接FG.H為FG的中點,連接DH.

        (1)求證:四邊形AFHD為平行四邊形;

        (2)若CB=CE,∠EBC=75°,∠DCE=10°,求∠DAB的度數(shù).

        2017-2018學年浙江省衢州市八年級(下)期中數(shù)學試卷

        參考答案與試題解析

        一、選擇題(本大題共10小題,每小題3分,共30分)

        1.(3分)方程x(x﹣2)=3x的解為(  )

        A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5

        【解答】解:x(x﹣2)=3x,

        x(x﹣2)﹣3x=0,

        x(x﹣2 ﹣3)=0,

        x=0,x﹣2﹣3=0,

        x1=0,x2=5,

        故選:B.

        2.(3分)在一次中學生田徑運動會上,參加男子跳高的15名運動員的成績?nèi)缦卤硭荆?/p>

        成績/m 1.50 1.60 1.65 1.70 1.75 1.80

        人數(shù) 2 3 2 3 4 1

        則這些運動員成績的中位數(shù)、眾數(shù)分別為(  )

        A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70

        【解答】解:共15名學生,中位數(shù)落在第8名學生處,第8名學生的跳高成績?yōu)?.70m,故中位數(shù)為1.70;

        跳高成績?yōu)?.75m的人數(shù)最多,故跳高成績的眾數(shù)為1.75;

        故選:C.

        3.(3分)不能判定四邊形ABCD為平行四邊形的條件是(  )

        A.AB∥CD,AD=BC B.AB∥CD,∠A=∠C C.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D

        【解答】解:A、“AB∥CD,AD=BC”是四邊形ABCD的一組對邊平行,另一組對邊相等,該四邊形可以是等腰梯形,不可以判定四邊形ABCD是平行四邊形.故本選項符合題意;

        B、根據(jù)“AB∥CD,∠A=∠C”可以判定AD∥BC,由“兩組對邊相互平行的四邊形為平行四邊形”可以判定四邊形ABCD為平行四邊形.故本選項不符合題意;

        C、“AD∥BC,AD=BC”是四邊形ABCD的一組對邊平行且相等,可以判定四邊形ABCD是平行四邊形.故本選項不符合題意;

        D、“∠A=∠C,∠B=∠D”是四邊形ABCD的兩組對角相等,可以判定四邊形ABCD是平行四邊形;故本選項不合題意;

        故選:A.

        4.(3分)實數(shù)a,b在數(shù)軸上對應點的位置如圖所示,化簡|a|+ 的結(jié)果是(  )

        A.﹣2a+b B.2a﹣b C.﹣b D.b

        【解答】解:由圖可知:a<0,a﹣b<0,

        則|a|+

        =﹣a﹣(a﹣b)

        =﹣2a+b.

        故選:A.

        5.(3分)如圖,在平行四邊形ABCD中,都不一定成立的是(  )

        ①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.

        A.①和④ B.②和③ C.③和④ D.②和④

        【解答】解:∵四邊形ABCD是平行四邊形,

        ∴AO=CO,故①成立;

        AD∥BC,故③成立;

        利用排除法可得②與④不一定成立,

        ∵當四邊形是菱形時,②和④成立.

        故選:D.

        6.(3分)若關于x的方程mx2﹣m x+2=0有兩個相等的實數(shù)根,則m的值為(  )

        A.0 B.8 C.4或8 D.0或8

        【解答】解:根據(jù)題意得△=(﹣m)2﹣4•m•2=0,解得m1=0,m2=8,

        而m≠0,

        所以m的值為8.

        故選:B.

        7.(3分)利用反證法證明“直角三角形至少有一個銳角不小于45°”,應先假設(  )

        A.直角三角形的每個銳角都小于45°

        B.直角三角形有一個銳角大于45°

        C.直角三角形的每個銳角都大于45°

        D.直角三角形有一個銳角小于45°

        【解答】解:用反證法證明命題“在直角三角形中,至少有一個銳角不小于45°”時,應先假設直角三角形的每個銳角都小于45°.

        故選:A.

        8.(3分)如圖,EF過▱ABCD對角線的交點O,交AD于E,交BC于F,若▱ABCD的周長為18,OE=1.5,則四邊形EFCD的周長為(  )

        A.14 B.13 C.12 D.10

        【解答】解:∵四邊形ABCD是平行四邊形,周長為18,

        ∴AB=CD,BC=AD,OA=OC,AD∥BC,

        ∴CD+AD=9,∠OAE=∠OCF,

        在△AEO和△CFO中, ,

        ∴△AEO≌△CFO(ASA),

        ∴OE=OF=1.5,AE=CF,

        則EFCD的周長=ED+CD+CF+EF=(DE+CF)+CD+EF=AD+CD+EF=9+3=12.

        故選:C.

        9.(3分)摩拜共享單車計劃2017年10、11、12月連續(xù)3月對深圳 投放新型摩拜單車,計劃10 月投放深圳3000臺,12月投放6000臺,每月按相同的增長率投放,設增長率為x,則可列方程(  )

        A.3000(1+x)2=6000

        B.3000(1+x)+3000(1+x)2=6000

        C.3000(1﹣x)2=6000

        D.3000+3000(1+x)+3000(1+x)2=6000

        【解答】解:設增長率為x,由題意得

        3000(1+x)2=6000.

        故選:A.

        10.(3分)如圖,△ABC中,D是AB的中點,E在AC上,且∠AED=90°+ ∠C,則BC+2AE等于(  )

        A.AB B.AC C. AB D. AC

        【解答】解:如圖,過點B作BF∥DE交AC于點F.則∠BFC=∠DEF.

        又∵點D是AB的中點,

        ∴EF=AE.

        ∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°+ ∠C)=90°﹣ ∠C,

        ∴∠FBC=∠BFC,

        ∴BC=FC,

        ∴BC+2AE=AC.

        故選:B.

        二、填空題(本大題共8小題,每小題3分,共24分)

        11.(3分)計算:( + )× = 13 .

        【解答】解:原式=(2 + )×

        = ×

        =13.

        故答案為13.

        12.(3分)已知一組數(shù)據(jù):3,3,4,5,5,則它的方差為   .

        【解答】解:這組數(shù)據(jù)的平均數(shù)是:(3+3+4+5+5)÷5=4,

        則這組數(shù)據(jù)的方差為: [(3﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(5﹣4)2]= .

        故答案為:

        13.(3分)已知x2+6x=﹣1可以配成(x+p)2=q的形式,則q= 8 .

        【解答】解:x2+6x+9=8,

        (x+3)2=8.

        所以q=8.

        故答案為8.

        14.(3分)某公司前年繳稅200萬元,今年繳稅338萬元,則該公司這兩年繳稅的年均增長率為 30% .

        【解答】解:設該公司這兩年繳稅的年均增長率為x,

        依題意得:200(1+x)2=338,

        解得x=0.3=30%.

        故答案是:30%.

        15.(3分 )如圖,Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分別為AC、AB的中點,連接DE,則△A DE的面積是 6 .

        【解答】解:∵D、E分別為AC、AB的中點,

        ∴AD= AC=4,DE= BC=3,DE∥BC,

        ∴∠ADE=∠C=90°,

        ∴△ADE的面積= ×AD×DE=6,

        故答案為:6.

        16.(3分)如圖,在▱ABCD中,∠D=100°,∠DAB的平分線AE交DC于點E,連接BE.若AE=AB,則∠EBC的度數(shù)為 30° .

        【解答】解:∵四邊形ABCD是平行四邊形,

        ∴∠ABC=∠D=100°,AB∥CD,

        ∴∠BAD=180°﹣∠D=80°,

        ∵AE平分∠DAB,

        ∴∠BAE=80°÷2=40°,

        ∵AE=AB,

        ∴∠ABE=(180°﹣40°)÷2=70°,

        ∴∠EBC=∠ABC﹣∠ABE=30°;

        故答案為:30°.

        17.(3分)如圖,四邊形ABCD中,點M、N分別在AB、BC上,將△BMN沿MN翻折,得△FMN,若MF∥AD,F(xiàn)N∥DC,則∠D的度數(shù)為 95 °.

        【解答】解:∵MF∥AD,F(xiàn)N∥DC,∠A=100°,∠C=70°,

        ∴∠BMF=100°,∠FNB=70°,

        ∵將△BMN沿MN翻折,得△FMN,

        ∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,

        ∴∠F=∠B=180°﹣50°﹣35°=95°,

        ∴∠D=360°﹣100°﹣70°﹣95°=95°.

        故答案為:95.

        18.(3分)如圖,在△ABC中,∠BAC=90°,AB=4,AC=6,點D、E分別是BC、AD的中點,AF∥BC交CE的延長線于F.則四邊形AFBD的面積為 12 .

        【解答】解:∵AF∥BC,

        ∴∠AFC=∠FCD,

        在△AEF與△DEC中,

        ∴△AEF≌△DEC(AAS).

        ∴AF=DC,

        ∵BD=DC,

        ∴AF=BD,

        ∴四邊形AFBD是平行四邊形,

        ∴S四邊形AFBD=2S△ABD,

        又∵BD=DC,

        ∴S△ABC=2S△ABD,

        ∴S四邊形AFBD=S△ABC,

        ∵∠BAC=90°,AB=4,AC=6,

        ∴S△ABC= AB•AC= ×4×6=12,

        ∴S四邊形AFBD=12.

        故答案為:12

        三、解答題(本大題共7小題,19-23每題6分,24-25每題8分,共46分)

        19.(6分)計算:

        (1)3 ﹣ ﹣

        (2) (2 +4 ﹣3 )

        【解答】解:(1)原式=6 ﹣3 ﹣

        = ;

        (2)原式= (4 + ﹣12 )

        = ( ﹣8 )

        =2﹣8 .

        20.(6分)解方程:

        (1)3(x﹣1)2=x(x﹣1)

        (2 )x2+1=3x.

        【解答】解:(1)方程整理,得

        3(x﹣1)2﹣x(x﹣1)=0

        因式分解,得

        (x﹣1)[3(x﹣1)﹣x]=0

        于是,得

        x﹣1=0或2x﹣3=0,

        解得x1=1,x2= ;

        (2)方程整理,得

        x2﹣3x+1=0

        ∵a=1,b=﹣3,c=1,

        ∴△=b2﹣4ac=(﹣3)2﹣4×1×1=5>0,

        ∴x= = ,

        即x1= ,x2= .

        21.(6分)為了從甲、乙兩人中選拔一人參加射擊比賽,現(xiàn)對他們的射擊成績進行了測試,5次打靶命中的環(huán)數(shù)如下:

        甲:8,7,9,8,8;乙:9,6,10,8,7;

        (1)將下表填寫完整:

        平均數(shù) 中位數(shù) 方差

        甲  8  8  0.4

        乙 8  8  2

        (2)根據(jù)以上信息,若你是教練,你會選擇誰參加射擊比賽,理由是什么?

        (3)若乙再射擊一次,命中8環(huán),則乙這六次射擊成績的方差會 變小 .(填“變大”或“變小”或“不變”)

        【解答】解:(1)甲平均數(shù)為(8+7+9+8+8)÷5=8,

        甲的方差為: [(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=0.4,

        乙的環(huán)數(shù)排序后為:6,7,8,9,10,故中位數(shù)為8;

        故答案為:8,0.4,8;

        (2)選擇甲.理由是甲的成績較穩(wěn)定.

        (3)若乙 再射擊一次,命中8環(huán),則乙這六次射擊成績的方差為:

        [(9﹣8)2+(6﹣8)2+(10﹣8)2+(8﹣8)2+(7﹣8)2+(8﹣8)2]= <2,

        ∴方差會變小.

        故答案為:變小.

        22.(6分)某化肥廠去年四月份生產(chǎn)化肥500噸,因管理不善,五月份的產(chǎn)量減少了10%,從六月起強化管理,該廠產(chǎn)量逐月上升,七月份產(chǎn)量達到648噸.

        (1)該廠五月份的產(chǎn)量為 450 噸;(直接填結(jié)果)

        (2)求六、七兩月產(chǎn)量的平均增長率.

        【解答】解 :(1)500(1﹣10%)=450(噸),

        故答案為:450;

        (2)設六、七兩個月的產(chǎn)量平均增長率為x,依題意得:

        450(1+x)2=648,

        (1+x)2=1.44,

        解得x1=0.2=20%,x2=﹣2.2=﹣220%(不合題意舍去),

        答:六、七兩月產(chǎn)量的平均增長率為20%.

        23.(6分)如圖,點B、E、C、F在一條直線上,AB=DF,AC=DE,BE=FC.

        (1)求證:△ABC≌△DFE;

        (2)連接AF、BD,求證:四邊形ABDF是平行四邊形.

        【解答】證明:(1)∵BE=FC,

        ∴BC=EF,

        在△ABC和△DFE中, ,

        ∴△ABC≌△DFE(SSS);

        (2)解:如圖所示:

        由(1)知△ABC≌△DFE,

        ∴∠ABC=∠DFE,

        ∴AB∥DF,

        ∵AB=DF,

        ∴四邊形ABDF是平行四邊形.

        24.(8分)△ABC的中線BD,CE相交于O,F(xiàn),G分別是BO,CO的中點,求證:EF∥DG,且EF=DG.

        【解答】證明:連接DE,F(xiàn)G,

        ∵BD,CE是△ABC的中位線,

        ∴D,E是AB,AC的中點,

        ∴DE∥BC,DE= BC,

        同理:FG∥BC,F(xiàn)G= BC,

        ∴DE∥FG,DE=FG,

        ∴四邊形DEFG是平行四邊形,

        ∴EF∥DG,EF=DG.

        25.(8分)如圖是一個多邊形,你能否用一直線去截這個多邊形,使得到的新多邊形分別滿足下列條件:(畫出圖形,把截去的部分打上陰影)

       ?、傩露噙呅蝺?nèi)角和比原多邊形的內(nèi)角和增加了1 80°.

       ?、谛露噙呅蔚膬?nèi)角和與原多邊形的內(nèi)角和相等.

       ?、坌露噙呅蔚膬?nèi)角和比原多邊形的內(nèi)角和減少了180°.

        (2)將多邊形只截去一個角,截后形成的多邊形的內(nèi)角和為2520°,求原多邊形的邊數(shù).

        【解答】解:(1)如圖所示:

        (2)設新多邊形的邊數(shù)為n,

        則(n﹣2)•180°=2520°,

        解得n=16,

       ?、偃艚厝ヒ粋€ 角后邊數(shù)增加1,則原多邊形邊數(shù)為15,

        ②若截去一個角后邊數(shù)不變,則原多邊形邊數(shù)為16,

       ?、廴艚厝ヒ粋€角后邊數(shù)減少1,則原多邊形邊數(shù)為17,

        故原多邊形的邊數(shù)可以為15,16或17.

        四、附加題(本題有2小題,每題10分,共20分)

        26.(10分)如圖所示中的幾個圖形是五角星和它的變形.

        (1)圖甲中是一個五角星形狀,求證:∠A+∠B+∠C+∠D+∠E=180°;

        (2)圖甲中的點A向下移到BE上時(如圖乙)五個角的和(即∠CAD+∠B+∠C+∠D+∠E)有無變化?試說明理由

        (3)把圖乙中的點C向上移動到BD上時(如圖丙所示),五個角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有無變化?試說明理由.

        【解答】解:(1)如圖:

        由三角形外角的性質(zhì),得

        ∠C+∠E=∠1,∠B+∠D=∠2.

        由三角形的內(nèi)角和定理,得∠A+∠1+∠2=180°,

        等量代換,得∠A+∠B+∠C+∠D+∠E=180゜;

        (2)如圖:

        由三角形外角的性質(zhì),得∠C+∠E=∠1,∠A+∠D=∠2,

        由三角形的內(nèi)角和定理,得∠B+∠1+∠2=180°,

        等量代換,得∠A+∠B+∠C+∠D+∠E=180゜;

        (3)∵∠ECD是△BCE的一個外角,

        ∴∠ECD=∠B+∠E(三角形的一個外角等于它不相鄰的兩個內(nèi)角的和),

        ∴∠CAD+∠B+∠ACE+∠D+∠E=∠CAD+∠ACE+∠D+∠ECD=∠CAD+∠ACD+∠D=180°,

        故∠CAD+∠B+∠ACE+∠D+∠E等于180°,沒有變化.

        27.(10分)如圖,四邊形ABCD為平行四邊形,E為AD上的一點,連接EB并延長,使BF=BE,連接EC并延長,使CG=CE,連接FG.H為FG的中點,連接DH.

        (1)求證:四邊形AFHD為平行四邊形;

        (2)若CB=CE,∠EBC=75°,∠DCE=10°,求∠DAB的度數(shù).

        【解答】(1)證明:∵BF=BE,CG=CE,

        ∴BC為△FEG的中位線,

        ∴BC∥FG,BC= FG,

        又∵H是FG的中點,

        ∴FH= FG,

        ∴BC=FH.

        又∵四邊形ABCD是平行四邊形,

        ∴AD∥BC,AD=BC,

        ∴AD∥FH,AD=FH,

        ∴四邊形AFHD是平行四邊形;

        (2)解:∵四邊形ABCD是平行四邊形,

        ∴∠DAB=∠DCB,

        ∵CE=CB,

        ∴∠BEC=∠EBC=75°,

        ∴∠BCE=180°﹣75°﹣75°=30°,

        ∴∠DCB=∠DCE+∠BCE=10°+30°=40°,

        ∴∠DAB=40°.

        八年級數(shù)學下學期期中試卷

        一、選擇題:(本大題共8小題,每小題2分,共16分.)

        1.(2分)下列圖形中,既是軸對稱圖形又是中心對稱圖形的是(  )

        A. B. C. D.

        2.(2分)若分式 的值為零,則(  )

        A.x=3 B.x=﹣3 C.x=2 D.x=﹣2

        3.(2分)若反比例函數(shù)的圖象經(jīng)過點(﹣2,3),則該反比例函數(shù)圖象一定經(jīng)過點(  )

        A.(2,﹣3) B.(﹣2,﹣3) C.(2,3) D.(﹣1,﹣6)

        4.(2分)一個不透明的盒子中裝有3個紅球,2個黃球,這些球除了顏色外其余都相同,從中隨機摸出3個小球,則事件“所摸3個球中必含有紅球”是(  )

        A.確定事件 B.必然事件 C.不可能事件 D.隨機事件

        5.(2分)如圖,△ABC中,∠ACB=90°,∠ABC=25°,以點C為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)后得到△A′B′C,且點A在邊A′B′上,則旋轉(zhuǎn)角的度數(shù)為(  )

        A.65° B.60° C.50° D.40°

        6.(2分)如圖,在平行四邊形ABCD中,BM是∠ABC的平分線,交CD于點M,且DM=2,平行四邊形ABCD的周長是14,則BC的長等于(  )

        A.2 B.2.5 C.3 D.3.5

        7.(2分)如圖,P為邊長為2的正方形ABCD的對角線BD上任一點,過點P作PE⊥BC于點E,PF⊥CD于點F,連接EF.給出以下4個結(jié)論:①AP=EF;②AP⊥EF;③EF最短長度為 ;④若∠BAP=30°時,則EF的長度為2.其中結(jié)論正確的有(  )

        A.①②③ B.①②④ C.②③④ D.①③④

        8.(2分)如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)y= (x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k= (  )

        A. B. C. D.12

        二、填空題:(本大題共10小題,每小題2分,共20分.)

        9.(2分)分式 有意義的x的取值范圍為   .

        10.(2分)分式 、 的最簡公分母是   .

        11.(2分)在一個不透明的口袋里,裝有僅顏色不同的黑球、白球若干只.某小組做摸球?qū)嶒灒簩⑶驍噭蚝髲闹须S機摸出一個,記下顏色,再放回袋中,不斷重復.下表是活動中的一組數(shù)據(jù),則摸到白球的概率約是   .

        摸球的次數(shù)n 100 150 200 500 800 1000

        摸到白球的次數(shù)m 58 96 116 295 484 601

        摸到白球的頻率m/n 0.58 0.64 0.58 0.59 0.605 0.601

        12.(2分)關于x的方程 +1= 有增根,則a的值為   .

        13.(2分)若點A(a,b)在反比例函數(shù)y= 的圖象上,則代數(shù)式ab﹣4的值為   .

        14.(2分)▱ABCD的周長是30,AC、BD相交于點O,△OAB的周長比△OBC的周長大3,則AB=   .

        15.(2分)已知一個菱形的邊長為5,其中一條對角線長為8,則這個菱形的面積為   .

        16.(2分)如圖,菱形ABCD中,P為AB中點,∠A=60°,折疊菱形ABCD,使點C落在DP所在的直線上,得到經(jīng) 過點D的折痕DE,則∠DEC的大小為   °.

        17.(2分)函數(shù)yl=x(x≥0), (x>0)的圖象如圖所示,則結(jié)論:

       ?、賰珊瘮?shù)圖象的交點A的坐標為(3,3);

       ?、诋攛>3時,y2>y1;

        ③當x=1時,BC=8;

       ?、墚攛逐漸增大時,yl隨著x的增大而增大,y2隨著x的增大而減小.

        其中正確結(jié)論的序號是   .

        18.(2分)如圖,矩形△ABCD中,AB=2,AD=1,E為CD中點,P為AB邊上一動點(含端點),F(xiàn)為CP中點,則△CEF的周長最小值為   .

        三、解答題:(本大題共10小題,共64分)

        19.(6分)化簡

        (1) ﹣ ;

        (2)1﹣ .

        20.(4分)解方程: ﹣ =1;

        21.(5分)先化簡,再求值: ÷(1﹣ )[其中,x= ]

        22.(5分)2015年3月30日是全國中小學生安全教育日,某學校為加強學生的安全意識,組織了全校1500名學生參加安全知識競賽,從中抽取了部分學生成績(得分取正整數(shù),滿分為100分)進行統(tǒng)計.請根據(jù)尚未完成的頻率分布表和頻數(shù)分布直方圖,解答下列問題:

        頻率分布表

        分數(shù)段 頻數(shù) 頻率

        50.5~60.5 16 0.08

        60.5~70.5 40 0.2

        70.5~80.5 50 0.25

        80.5~90.5 m 0.35

        90.5~100.5 24 n

        (1)這次抽取了   名學生的競賽成績進行統(tǒng)計,其中:m=   ,n=   ;

        (2)補全頻數(shù)分布直方圖;

        (3)若成績在70分以下(含70分)的學生為安全意識不強,有待進一步加強安全教育,則該校安全意識不強的學生約有多少人?

        23.(6分)如圖,在▱ABCD中,E為BC邊上一點,且AB=AE.

        (1)求證:△ABC≌△EAD;

        (2)若∠B=65°,∠EAC=25°,求∠AED的度數(shù).

        24.(6分)已知,在平面直角坐標系xOy中,函數(shù)y= (x>0)的圖象與一次函數(shù)y=kx﹣k的圖象的交點為A(m,2).

        (1)求一次函數(shù)的解析式;

        (2)設一次函數(shù)y=kx﹣k的圖象與y軸交于點B,若P是x軸上一點,且滿足△PAB的面積是6,求點P的坐標.

        25.(7分)如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥BC且DE= AC,連接CE、OE,連接AE交OD于點F.

        (1)求證:OE=CD;

        (2)若菱形ABCD的邊長為2,∠ABC=60°.求AE的長.

        26.(7分)某商場出售一批進價為2元的賀卡,在市場營銷中發(fā)現(xiàn)此商品的日銷售單價x(元)與日銷售量y(個)之間有如下關系:

        日銷售單價x(元) 3 4 5 6

        日銷售量y(個) 20 15 12 10

        (1)猜測并確定y與x之間的函數(shù)關系式,并畫出圖象;

        (2)設經(jīng)營此賀卡的銷售利潤為W元,求出W與x之間的函數(shù)關系式,

        (3)若物價局規(guī)定此賀卡的售價最高不能超過10元/個,請你求出當日銷售單價x定為多少時,才能獲得最大日銷售利潤?最大利潤是多少元?

        27.(9分)如圖,正方形AOCB的邊長為4,反比例函數(shù)的圖象過點E(3,4).

        (1)求反比例函數(shù)的解析式;

        (2)反比例函數(shù)的圖象與線段BC交于點D,直線 過點D,與線段AB相交于點F,求點F的坐標;

        (3)連接OF,OE,探究∠AOF與∠EOC的數(shù)量關系,并證明.

        28.(9分)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=3 .分別以OA、OC邊所在直線為x軸、y軸建立如圖1所示的平面直角坐標系.

        (1)求點B的坐標;

        (2)已知D、E分別為線段OC、OB上的點,OD=5,OE=2EB,直線DE交x軸于點F,過點E作EG⊥x軸于G,且EG:OG=2.求直線DE的解析式;

        (3)點M是(2)中直線DE上的一個動點,在x軸上方的平面內(nèi)是否存在另一點N,使以O、D、M、N為頂點的四邊形是菱形?若存在,請求出點N的坐標;若不存在,請說明理由.

        參考答案與試題解析

        一、選擇題:(本大題共8小題,每小題2分,共16分.)

        1.(2分)下列圖形中,既是軸對稱圖形又是中心對稱圖形的是(  )

        A. B. C. D.

        【解答】解:A、是軸對稱圖形,不是中心對稱的圖形,故本選項不符合題意;

        B、不是軸對稱圖形,也不是中心對稱的圖形,故本選項不符合題意;

        C、不是軸對稱圖形,是中心對稱的圖形,故本選項不符合題意;

        D、是軸對稱圖形,也是中心對稱的圖形,故本選項符合題意.

        故選:D.

        2.(2分)若分式 的值為零,則(  )

        A.x=3 B.x=﹣3 C.x=2 D.x=﹣2

        【解答】解:由題意得:x+2=0,且x﹣3≠0,

        解得:x=﹣2,

        故選:D.

        3.(2分)若反比例函數(shù)的圖象經(jīng)過點(﹣2,3),則該反比例函數(shù)圖象一定經(jīng)過點(  )

        A.(2,﹣3) B.(﹣2,﹣3) C. (2,3) D.(﹣1,﹣6)

        【解答】解:設反比例函數(shù)的解析式為:y= ,

        反比例函數(shù)的圖象經(jīng)過點(﹣2,3),

        ∴k=﹣6,即解析式為y=﹣ ,

        A、滿足;B、不滿足;C、不滿足;D、不滿足,

        故選:A.

        4.(2分)一個不透明的盒子中裝有3個紅球,2個黃球,這些球除了顏色外其余都相同,從中隨機摸出3個小球,則 事件“所摸3個球中必含有紅球”是(  )

        A.確定事件 B.必然事件 C.不可能事件 D.隨機事件

        【解答】解:∵盒子中裝有3個紅球,2個黃球,

        ∴從中隨機摸出3個小球,則事件“所摸3個球中必含紅球”是必然事件,

        故選:B.

        5.(2分)如圖,△ABC中,∠ACB=90°,∠ABC=25°,以點C為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)后得到△A′B′C,且點A在邊A′B′上,則旋轉(zhuǎn)角的度數(shù)為(  )

        A.65° B.60° C.50° D.40°

        【解答】解:∵∠ACB=90°,∠ABC=25°,

        ∴∠BAC=65°,

        ∵以點C為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)后得到△A′B′C,且點A在邊A′B′上,

        ∴CA=CA′,∠A′=∠BAC=65°,∠ACA′等于旋轉(zhuǎn)角,

        ∴∠CAA′=∠A′=65°,

        ∴∠ACA′=180°﹣65°﹣65°=50°,

        即旋轉(zhuǎn)角的度數(shù)為50°.

        故選:C.

        6.(2分)如圖,在平行四邊形ABCD中,BM是∠ABC的平分線,交CD于點M,且DM=2,平行四邊形ABCD的周長是14,則BC的長等于(  )

        A.2 B.2.5 C.3 D.3.5

        【解答】解:∵BM是∠ABC的平分線,

        ∴∠ABM=∠CBM,

        ∵AB∥CD,

        ∴∠ABM=∠BMC,

        ∴∠BMC=∠CBM,

        ∴BC=MC,

        ∵▱ABCD的周長是14,

        ∴BC+CD=7,

        ∴BC+BC+DM=7,

        ∵DM=2,

        ∴BC=2.5,

        故選:B.

        7.(2分)如圖,P為邊長為2的正方形ABCD的對角線BD上任一點,過點P作PE⊥BC于點E,PF⊥CD于點F,連接EF.給出以下4個結(jié)論:①AP=EF;②AP⊥EF;③EF最短長度為 ;④若∠BAP=30°時,則EF的長度為2.其中結(jié)論正確的有(  )

        A.①②③ B.①②④ C.②③④ D.①③④

        【解答】解:

       ?、偃鐖D,連接PC,

        ∵四邊形ABCD為正方形,

        ∴AB=BC,∠ABP=∠CBP=45°,

        在△ABP和△CBP中

        ∴△ABP≌△CBP(SAS),

        ∴AP=PC,

        ∵PE⊥BC,PF⊥CD,且∠FCE=90°,

        ∴四邊形PECF為矩形,

        ∴PC=EF,

        ∴AP=EF,故①正確;

       ?、谘娱LAP交BC于點G,

        由①可得∠PCE=∠PFE=∠BAP,

        ∵PE∥AB,

        ∴∠EPG=∠BAP,

        ∴∠EPG=∠PFE,

        ∵∠EPF=90°,

        ∴∠EPG+∠PEF=∠PEG+∠PFE=90°,

        ∴AP⊥EF,故②正確;

       ?、郛擜P⊥BD時,AP有最小值 ,此時P為BD的中點,

        由①可知EF=AP,

        ∴EF的最短長度為 ,故③正確;

       ?、墚旤cP在點B或點D位置時,AP=AB=2,

        ∴EF=AP≤2,

        ∴當∠BAP=30°時,AP<2,

        即EF的長度不可能為2,故④不正確;

        綜上可知正確的結(jié)論為①②③,

        故選:A.

        8.(2分)如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)y= (x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k=(  )

        A. B. C. D.12

        【解答】解:∵四邊形OCBA是矩形,

        ∴AB=OC,OA=BC,

        設B點的坐標為(a,b),

        ∵BD=3AD,

        ∴D( ,b),

        ∵點D,E在反比例函數(shù)的圖象上,

        ∴ =k,∴E(a, ),

        ∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣ ﹣ k﹣ •(b﹣ )=9,

        ∴k= ,

        故選:C.

        二、填空題:(本大題共10小題,每小題2分,共20分.)

        9.(2分)分式 有意義的x的取值范圍為 x≠1 .

        【解答】解:當分母x﹣1≠0,即x≠1時,分式 有意義.

        故答案是:x≠1.

        10.(2分)分式 、 的最簡公分母是 6x3y2 .

        【解答】解:分式 、 的最簡公分母是6x3y2,

        故答案為6x3y2.

        11.(2分)在一個不透明的口袋里,裝有僅顏色不同的黑球、白球若干只.某小組做摸球?qū)嶒灒簩⑶驍噭蚝髲闹须S機摸出一個,記下顏色,再放回袋中 ,不斷重復.下表是活動中的一組數(shù)據(jù),則摸到白球的概率約是 0.6 .

        摸球的次數(shù)n 100 150 200 500 800 1000

        摸到白球的次數(shù)m 58 96 116 295 484 601

        摸到白球的頻率m/n 0.58 0.64 0.58 0.59 0.605 0.601

        【解答】解:觀察表格得:通過多次摸球?qū)嶒灪蟀l(fā)現(xiàn)其中摸到白球的頻率穩(wěn)定在0.6左右,

        則P白球=0.6.

        故答案為0.6.

        12.(2分)關于x的方程 +1= 有增根,則a的值為 2 .

        【解答】解:方程兩邊都乘(x﹣2),得

        x+x﹣2=a,即a=2x﹣2.

        分式方程的增根是x=2,

        ∵原方程增根為x=2,

        ∴把x=2代入整式方程,得a=2,

        故答案為:2.

        13.(2分)若點A(a,b)在反比例函數(shù)y= 的圖象上,則代數(shù)式ab﹣4的值為 ﹣2 .

        【解答】解:∵點A(a,b)在反比例函數(shù)y= 的圖象上,

        ∴b= ,即ab=2,

        ∴ab﹣4=2﹣4=﹣2.

        故答案為:﹣2.

        14.(2分)▱ABCD的周長是30,AC、BD相交于點O,△OAB的周長比△OBC的周長大3,則AB= 9 .

        【解答】解:∵四邊形ABCD是平行四邊形,

        ∴AB=CD,BC=AD,OA=OC,OB=OD;

        又∵△OAB的周長比△OBC的周長大3,

        ∴AB+OA+OB﹣(BC+OB+OC)=3

        ∴AB﹣BC=3,

        又∵▱ABCD的周長是30,

        ∴AB+BC=15,

        ∴AB=9.

        故答案為9.

        15.(2分)已知一個菱形的邊長為5,其中一條對角線長為8,則這個菱形的面積為 24 .

        【解答】解:如圖,∵菱形ABCD中,BD=8,AB=5,

        ∴AC⊥BD,OB= BD=4,

        ∴OA= =3,

        ∴AC=2OA=6,

        ∴這個菱形的面積為: AC•BD= ×6×8=24.

        故答案為:24.

        16.(2分)如圖,菱形ABCD中,P為 AB中點,∠A=60°,折疊菱形ABCD,使點C落在DP所在的直線上,得到經(jīng)過點D的折痕DE,則∠DEC的大小為 75 °.

        【解答】解:連接BD,

        ∵四邊形ABCD為菱形,∠A=60°,

        ∴△ABD為等邊三角形,∠ADC=120°,∠C=60°,

        ∵P為AB的中點,

        ∴DP為∠ADB的平分線,即∠ADP=∠BDP=30° ,

        ∴∠PDC=90°,

        ∴由折疊的性質(zhì)得到∠CDE=∠PDE=45°,

        在 △DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.

        故答案為:75.

        17.(2分)函數(shù)yl=x(x≥0), (x>0)的圖象如圖所示,則結(jié)論:

       ?、賰珊瘮?shù)圖象的交點A的坐標為(3,3);

        ②當x>3時,y2>y1;

        ③當x=1時,BC=8;

       ?、墚攛逐漸增大時,yl隨著x的增大而增大,y2隨著x的增大而減小.

        其中正確結(jié)論的序號是?、佗邰堋?

        【解答】解:①根據(jù)題意列解方程組 ,

        解得 , ;

        ∴這兩個函數(shù)在第一象限內(nèi)的交點A的坐標為(3,3),故①正確;

       ?、诋攛>3時,y1在y2的上方,故y1>y2,故②錯誤;

       ?、郛攛=1時,y1=1,y2= =9,即點C的坐標為(1,1),點B的坐標為(1,9),所以BC=9﹣1=8,故③正確;

       ?、苡捎趛1=x(x≥0)的圖象自左向右呈上升趨勢,故y1隨x的增大而增大,

        y2= (x>0)的圖象自左向右呈下降趨勢,故y2隨x的增大而減小,故④正確.

        因此①③④正確,②錯誤.

        故答案為 :①③④.

        18.(2分)如圖,矩形△ABCD中,AB=2,AD=1,E為CD中點,P為AB邊上一動點(含端點),F(xiàn)為CP中點,則△CEF的周長最小值為  +1 .

        【解答】解:∵E為CD中點,F(xiàn)為CP中點,

        ∴EF= PD,

        ∴C△CEF=CE+CF+EF=CE+ (CP+PD)= (CD+PC+PD)= C△CDP,

        ∴當△CDP的周長最小時,△CEF的周長最小;

        即PC+PD的值最小時,△CEF的周長最小;

        如圖,作D關于AB的對稱點D′,連接CD′交AB于P,

        ∵AD=AD′=BC,AD′∥BC,

        ∴四邊形AD′BC是平行四邊形,

        ∴AP=PB=1,PD′=PC,

        ∴CP=PD= ,

        ∴C△CEF= C△CDP= +1,

        故答案為: +1.

        三、解答題:(本大題共10小題,共64分)

        19.(6分)化簡

        (1) ﹣ ;

        (2)1﹣ .

        【解答】解:(1)原式=

        =

        =a﹣1;

        (2)原式=1﹣ •

        =1﹣

        = ﹣

        =﹣ .

        20.(4分)解方程: ﹣ =1;

        【解答】解:去分母得:x2+4x+4﹣4=x2﹣4,

        解得:x=﹣1,

        經(jīng)檢驗x=﹣1是分式方程的解.

        21.(5分)先化簡,再求值: ÷(1﹣ )[其中,x= ]

        【解答】解:原式= ÷ = • = ,

        當x= 時,原式= = .

        22.(5分)2015年3月30日是全國中小學生安全教育日,某學校為加強學生的安全意識,組織了全校1500名學生參加安全知識競賽,從中抽取了部分學生成績(得分取正整數(shù),滿分為100分)進行統(tǒng)計.請根據(jù)尚未完成的頻率分布表和頻數(shù)分布直方圖,解答下列問題:

        頻率分布表

        分數(shù)段 頻數(shù) 頻率

        50.5~60.5 16 0.08

        60.5~70.5 40 0.2

        70.5~80.5 50 0.25

        80.5~90.5 m 0.35

        90.5~100.5 24 n

        (1)這次抽取了 200 名學生的競賽成績進行統(tǒng)計,其中:m= 70 ,n= 0.12 ;

        (2)補全頻數(shù)分布直方圖;

        (3)若成績在70分以下(含70分)的學生為安全意識不強,有待進一步加強安全教育,則該校安全意識不強的學生約有多少人?

        【解答】解:(1)16÷0.08=200,

        m=200×0.35=70,n=24÷200=0.12;

        故答案為200,70;0.12;

        (2)如圖,

        (3)1500×(0.08+0.2)=420,

        所以該校安全意識不強的學生約有420人.

        23.(6分)如圖,在▱ABCD中,E為BC邊上一點,且AB=AE.

        (1)求證:△ABC≌△EAD;

        (2)若∠B=65°,∠EAC=25°,求∠AED的度數(shù).

        【解答】(1)證明:∵在平行四邊形ABCD中,AD∥BC,BC=AD,

        ∴∠EAD=∠AEB,

        又∵AB=AE,

        ∴∠B=∠AEB,

        ∴∠B=∠EAD,

        在△ABC和△EAD中,

        ,

        ∴△ABC≌△EAD(SAS).

        (2)解:∵AB=AE,

        ∴∠B=∠AEB,

        ∴∠BAE=50°,

        ∴∠BAC=∠BAE+∠EAC=50°+25°=75°,

        ∵△ABC≌△EAD,

        ∴∠AED=∠BAC=75°.

        24.(6分)已知,在平面直角坐標系xOy中,函數(shù)y= (x>0)的圖象與一次函數(shù)y=kx﹣k的圖象的交點為A(m,2).

        (1)求一次函數(shù)的解析式;

        (2)設一次函數(shù)y=kx﹣k的圖象與y軸交于點B,若P是x軸上一點,且滿足△PAB的面積是6,求點P的坐標.

        【解答】解:(1)根據(jù)題意,將點A(m,2)代入y= ,

        得:2= ,

        解得:m=2,

        即點A(2,2),

        將點A(2,2)代入y=kx﹣k,得:2=2k﹣k,

        解得:k=2,

        ∴一次函數(shù)的解析式為y=2x﹣2;

        (2)如圖,

        ∵一次函數(shù)y=2x﹣2與x軸的交點為C(1,0),與y軸的交點為B(0,﹣2),

        S△ABP=S△ACP+S△BPC,

        ∴ ×2CP+ ×2CP=6,

        解得CP=3,

        則P點坐標為(4,0),(﹣2,0).

        25.(7分)如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥BC且DE= AC,連接CE、OE,連接AE交OD于點F.

        (1)求證:OE=CD;

        (2)若菱形ABCD的邊長為2,∠ABC=60°.求AE的長.

        【解答】(1)證明:在菱形ABCD中,OC= AC.

        ∴DE=OC.

        ∵DE∥AC,

        ∴四邊形OCED是平行四邊形.

        ∵AC⊥BD,

        ∴平行四邊形OCED是矩形.

        ∴OE=CD.

        (2)在菱形ABCD中,∠ABC=60°,

        ∴AC=AB=2.

        ∴在矩形OCED中,

        CE=OD= .

        在Rt△ACE中,

        AE= .

        26.(7分)某商場出售一批進價為2元的賀卡,在市場營銷中發(fā)現(xiàn)此商品的日銷售單價x(元)與日銷售量y(個)之間有如下關系:

        日銷售單價x(元) 3 4 5 6

        日銷售量y(個) 20 15 12 10

        (1)猜測并確定y與x之間的函數(shù)關系式,并畫出圖象;

        (2)設經(jīng)營此賀卡的銷售利潤為W元,求出W與x之間的函數(shù)關系式,

        (3)若物價局規(guī)定此賀卡的售價最高不能超過10元/個,請你求出當日銷售單價x定為多少時,才能獲得最大日銷售利潤?最大利潤是多少元?

        【解答】解:(1)由表可知,xy=60,

        ∴y= (x>0),

        函數(shù)圖象如下:

        (2)根據(jù)題意,得:

        W=(x﹣2)•y

        =(x﹣2)•

        =60﹣ ;

        (3)∵x≥10,

        ∴﹣ ≤﹣12,

        則60﹣ ≤48,

        即當x=10時,W取得最大值,最 大值為48元,

        答:當日銷售單價x定 為10元/個時,才能獲得最大日銷售利潤,最大利潤是48元.

        27.(9分)如圖,正方形AOCB的邊長為4,反比例函數(shù)的圖象過點E(3,4).

        (1)求反比例函數(shù)的解析式;

        (2)反比例函數(shù)的圖象與線段BC交于點D, 直線 過點D,與線段AB相交于點F,求點F的坐標;

        (3)連接OF,OE,探究∠AOF與∠EOC的數(shù)量關系,并證明.

        【解答】解:(1)設反比例函數(shù)的解析式y(tǒng)= ,

        ∵反比例函數(shù)的圖象過點E(3,4),

        ∴4= ,即k=12.

        ∴反比例函數(shù)的解析式y(tǒng)= ;

        (2)∵正方形AOCB的邊長為4,

        ∴點D的橫坐標為4,點F的縱坐標為4.

        ∵點D在反比例函數(shù)的圖象上,

        ∴點D的縱坐標為3,即D(4,3).

        ∵點D在直線y=﹣ x+b上,

        ∴3=﹣ ×4+b,解得b=5.

        ∴直線DF為y=﹣ x+5,

        將y=4代入y=﹣ x+5,得4=﹣ x+5,解得x=2.

        ∴點F的坐標為(2,4).

        (3)∠AOF= ∠EOC.

        證明:在CD上取CG=AF=2,連接OG,連接EG并延長交x軸于點H.

        ∵AO=CO=4,∠OAF=∠OCG=90°,AF=CG=2,

        ∴△OAF≌△OCG(SAS).

        ∴∠AOF=∠COG.

        ∵∠EGB=∠HGC,∠B=∠GCH=90°,BG=CG=2,

        ∴△EGB≌△HGC(ASA).

        ∴EG=HG.

        設直線EG:y=mx+n,

        ∵E(3,4),G(4,2),

        ∴ ,解得, .

        ∴直線EG:y=﹣2x+10.

        令y=﹣2x+10=0,得x=5.

        ∴H(5,0),OH=5.

        在Rt△AOE中,AO=4,AE=3,根據(jù)勾股定理得OE=5 .

        ∴OH=OE.

        ∴OG是等腰三角形底邊EH上的中線.

        ∴OG是等腰三角形頂角的平分線.

        ∴∠EOG=∠GOH.

        ∴∠EOG=∠GOC=∠AOF,即∠AOF= ∠EOC.

        28.(9分)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=3 .分別以OA、OC邊所在直線為x軸 、y軸建立如圖1所示的平面直角坐標系.

        (1)求點B的坐標;

        (2)已知D、E分別為線段OC、OB上的點,OD=5,OE=2EB,直線DE交x軸于點F,過點E作EG⊥x軸于G,且EG:OG=2.求直線DE的解析式;

        (3)點M是(2)中直線DE上的一個動點,在x軸上方的平面內(nèi)是否存在另一點N,使以O、D、M、N為頂點的四邊形是菱形?若存在,請求出點N的坐標;若不存在,請說明理由.

        【解答】解:(1)如圖過點B作BB′⊥x軸,垂足為點B′,如圖1所示.

        ∵CB∥OA,∠COA=90°,CB=3,OA=6,

        ∴OB′=CB=3,AB′=3.

        在Rt△ABB′中,∠AB′B=90°,AB′=3,BA=3 ,

        ∴BB′= =6,

        ∴點B的坐標為(3,6).

        (2)如圖2所示,∵OC=6,BC=3,

        ∴OB= =3 ,

        ∵OE=2EB,

        ∴OE= OB=2 .

        又∵EG=2OG,OE2=EG2+OG2,

        ∴OG=2,EG=4,

        ∴點E的坐標為(2,4).

        ∵OD=5,

        ∴點D的坐標為(0,5).

        設直線DE的解析式為y=kx+b(k≠0),

        將點D(0,5)、E(2,4)代入y=kx+b,得:

        ,解得: ,

        ∴直線DE的解析式為y=﹣ x+5.

        (3)分兩種情況考慮(如圖3所示):

       ?、佼擮D為邊時,過點D作DF⊥MN,垂足為F.

        ∵直線DE的解析式為y=﹣ x+5,

        ∴DF=2MF,

        又∵DM=OD=5,

        ∴DF=2 ,MF= ,

        ∴點M的坐標為(﹣2 ,5+ ).

        ∵四邊形OCMN為菱形,

        ∴點N的坐標為(﹣2 , );

       ?、诋擮D為對角線時,

        同理:可求出點M的坐標為(2 ,5﹣ ).

        ∵四邊形OMDN為菱形,

        ∴點N的坐標為(﹣2 ,5﹣ ).

        綜上所述:在x軸上方的平面內(nèi)存在另一點N,使以O、D、M、N為頂點的四邊形是菱形,點N的坐標為(﹣2 , )或(﹣2 ,5﹣ ).


      初中八年級下冊數(shù)學期中試卷相關文章:

      1.八年級下冊數(shù)學期中測試卷及答案(新人教版)

      2.八年級下數(shù)學期中測試

      3.八年級數(shù)學期中考試卷子

      4.初二下冊數(shù)學練習試卷含答案

      5.八年級數(shù)學期中綜合測評卷答案

      4165713