亚洲高清vr播放在线观看,欧美亚洲精品免费,欧美日韩天堂在线视频,午夜福利小视频

      學習啦>學習方法>初中學習方法>初二學習方法>八年級數(shù)學>

      初二數(shù)學知識點全總結人教版

      時間: 舒淇0 分享

      數(shù)學是一門基礎性的科學,值得每個人去學習,尤其是孩子,更要去學習數(shù)學,并且以此來構架自己的思維體系。下面小編為大家?guī)沓醵?shù)學知識點全總結人教版,希望大家喜歡!

      初二數(shù)學知識點總結

      第一章勾股定理

      1、探索勾股定理

      ①勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2

      2、一定是直角三角形嗎

      ①如果三角形的三邊長a b c滿足a2+b2=c2,那么這個三角形一定是直角三角形

      3、勾股定理的應用

      第二章實數(shù)

      1、認識無理數(shù)

      ①有理數(shù):總是可以用有限小數(shù)和無限循環(huán)小數(shù)表示

      ②無理數(shù):無限不循環(huán)小數(shù)

      2、平方根

      ①算數(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x就叫做a的算數(shù)平方根

      ②特別地,我們規(guī)定:0的算數(shù)平方根是0

      ③平方根:一般地,如果一個數(shù)x的平方等于a,即x2=a。那么這個數(shù)x就叫做a的平方根,也叫做二次方根

      ④一個正數(shù)有兩個平方根;0只有一個平方根,它是0本身;負數(shù)沒有平方根

      ⑤正數(shù)有兩個平方根,一個是a的算數(shù)平方,另一個是—,它們互為相反數(shù),這兩個平方根合起來可記作±

      ⑥開平方:求一個數(shù)a的平方根的運算叫做開平方,a叫做被開方數(shù)

      3、立方根

      ①立方根:一般地,如果一個數(shù)x的立方等于a,即x3=a,那么這個數(shù)x就叫做a的立方根,也叫三次方根

      ②每個數(shù)都有一個立方根,正數(shù)的立方根是正數(shù);0立方根是0;負數(shù)的立方根是負數(shù)。

      ③開立方:求一個數(shù)a的立方根的運算叫做開立方,a叫做被開方數(shù)

      4、估算

      ①估算,一般結果是相對復雜的小數(shù),估算有精確位數(shù)

      5、用計算機開平方

      6、實數(shù)

      ①實數(shù):有理數(shù)和無理數(shù)的統(tǒng)稱

      ②實數(shù)也可以分為正實數(shù)、0、負實數(shù)

      ③每一個實數(shù)都可以在數(shù)軸上表示,數(shù)軸上每一個點都對應一個實數(shù),在數(shù)軸上,右邊的點永遠比左邊的點表示的數(shù)大

      7、二次根式

      ①含義:一般地,形如(a≥0)的式子叫做二次根式,a叫做被開方數(shù)

      ② =(a≥0,b≥0),=(a≥0,b>0)

      ③最簡二次根式:一般地,被開方數(shù)不含分母,也不含能開的盡方的因數(shù)或因式,這樣的二次根式,叫做最簡二次根式

      ④化簡時,通常要求最終結果中分母不含有根號,而且各個二次根式時最簡二次根式

      第三章位置與坐標

      1、確定位置

      ①在平面內,確定一個物體的位置一般需要兩個數(shù)據(jù)

      2、平面直角坐標系

      ①含義:在平面內,兩條互相垂直且有公共原點的數(shù)軸組成平面直角坐標系

      ②通常地,兩條數(shù)軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或者橫軸,豎直的數(shù)軸叫y軸和縱軸,二者統(tǒng)稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點

      ③建立了平面直角坐標系,平面內的點就可以用一組有序實數(shù)對來表示

      ④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限

      ⑤在直角坐標系中,對于平面上任意一點,都有唯一的一個有序實數(shù)對(即點的坐標)與它對應;反過來,對于任意一個有序實數(shù)對,都有平面上唯一的一點與它對應

      3、軸對稱與坐標變化

      ①關于x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數(shù);關于y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數(shù)

      第四章一次函數(shù)

      1、函數(shù)

      ①一般地,如果在一個變化過程中有兩個變量x和y,并且對于變量x的每一個值,變量y都有唯一的值與它對應,那么我們稱y是x的函數(shù)其中x是自變量

      ②表示函數(shù)的方法一般有:列表法、關系式法和圖象法

      ③對于自變量在可取值范圍內的一個確定的值a,函數(shù)有唯一確定的對應值,這個對應值稱為當自變量等于a的函數(shù)值

      2、一次函數(shù)與正比例函數(shù)

      ①若兩個變量x,y間的對應關系可以表示成y=kx+b(k、b為常數(shù),k≠0)的形式,則稱y是x的一次函數(shù),特別的,當b=0時,稱y是x的正比例函數(shù)

      3、一次函數(shù)的圖像

      ①正比例函數(shù)y=kx的圖像是一條經過原點(0,0)的直線。因此,畫正比例函數(shù)圖像是,只要再確定一點,過這個點與原點畫直線就可以了

      ②在正比例函數(shù)y=kx中,當k>0時,y的值隨著x值的增大而減小;當k<0時,y的值隨著x的值增大而減小

      ③一次函數(shù)y=kx+b的圖像是一條直線,因此畫一次函數(shù)圖像時,只要確定兩個點,再過這兩點畫直線就可以了。一次函數(shù)y=kx+b的圖像也稱為直線y=kx+b

      ④一次函數(shù)y=kx+b的圖像經過點(0,b)。當k>0時,y的值隨著x值的增大而增大;當k<0時,y的值隨著x值的增大而減小

      4、一次函數(shù)的應用

      ①一般地,當一次函數(shù)y=kx+b的函數(shù)值為0時,相應的自變量的值就是方程kx+b=0的解,從圖像上看,一次函數(shù)y=kx+b的圖像與x軸交點的橫坐標就是方程kx+b=0

      第五章二元一次方程組

      1、認識二元一次方程組

      ①含有兩個未知數(shù),并且所含有未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程

      ②共含有兩個未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組

      ③二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解

      2、求解二元一次方程組

      ①將其中一個方程中的某個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,并代入另個方程中,從而消去一個未知數(shù),化二元一次方程組為一元一次方程,這種解方程組的方法稱為代入消元法,簡稱代入法

      ②通過兩式子加減,消去其中一個未知數(shù),這種解二元一次方程組的方法叫做加減消元法,簡稱加減法

      3、應用二元一次方程組

      ①雞兔同籠

      4、應用二元一次方程組

      ①增減收支

      5、應用二元一次方程組

      ①里程碑上的數(shù)

      6、二元一次方程組與一次函數(shù)

      ①一般地,以一個二元一次方程的解為坐標的點組成的圖像與相應的一次函數(shù)的圖像相同,是一條直線

      ②一般地,從圖形的角度看,確定兩條直線相交點的坐標,相當于求相應的二元一次方程組的解,解一個二元一次方程組相當于確定相應兩條直線交點的坐標

      7、用二元一次方程組確定一次函數(shù)表達式

      ①先設出函數(shù)表達式,再根據(jù)所給條件確定表達式中未知的系數(shù),從而得到函數(shù)表達式的方法,叫做待定系數(shù)法。

      8、三元一次方程組

      ①在一個方程組中,各個式子都含有三個未知數(shù),并且所含有未知數(shù)的項的次數(shù)都是1,這樣的方程叫做三元一次方程

      ②像這樣,共含有三個未知數(shù)的三個一次方程所組成的一組方程,叫做三元一次方程組

      ③三元一次方程組中各個方程的公共解,叫做這個三元一次方程組的解。

      第六章數(shù)據(jù)的分析

      1、平均數(shù)

      ①一般地,對于n個數(shù)x1x2.....xn,我們把(x1+x2+···+xn)叫做這n個數(shù)的算數(shù)平均數(shù),簡稱平均數(shù)記為。

      ②在實際問題中,一組數(shù)據(jù)里的各個數(shù)據(jù)的“重要程度”未必相同,因而在計算,這組數(shù)據(jù)的平均數(shù)時,往往給每個數(shù)據(jù)一個權,叫做加權平均數(shù)

      2、中位數(shù)與眾數(shù)

      ①中位數(shù):一般地,n個數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)

      ②一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)

      ③平均數(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢的統(tǒng)計量

      ④計算平均數(shù)時,所有數(shù)據(jù)都參加運算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實生活中較為常用,但他容易受極端值影響。

      ⑤中位數(shù)的優(yōu)點是計算簡單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息

      ⑥各個數(shù)據(jù)重復次數(shù)大致相等時,眾數(shù)往往沒有特別意義

      3、從統(tǒng)計圖分析數(shù)據(jù)的集中趨勢

      4、數(shù)據(jù)的離散程度

      ①實際生活中,除了關心數(shù)據(jù)的集中趨勢外,人們還關注數(shù)據(jù)的離散程度,即它們相對于集中趨勢的偏離情況。一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,(稱為極差),就是刻畫數(shù)據(jù)離散程度的一個統(tǒng)計量

      ②數(shù)學上,數(shù)據(jù)的離散程度還可以用方差或標準差刻畫

      ③方差是各個數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)

      ④其中是x1x2......xn平均數(shù),s2是方差,而標準差就是方差的算術平方根

      ⑤一般而言,一組數(shù)據(jù)的極差、方差或標準差越小,這組數(shù)據(jù)就越穩(wěn)定。

      第七章平行線的證明

      1、為什么要證明

      ①實驗、觀察、歸納得到的結論可能正確,也可能不正確,因此,要判斷一個數(shù)學結論是否正確,僅僅依靠實驗、觀察、歸納是不夠的,必須進行有根有據(jù)的證明

      2、定義與命題

      ①證明時,為了交流方便,必須對某些名稱和術語形成共同的認識,為此,就要對名稱和術語的含義加以描述,做出明確的規(guī)定,也就是給它們的定義

      ②判斷一件事情的句子,叫做命題

      ③一般地,每個命題都由條件和結論兩部分組成。條件是已知的選項,結論是已知選項推出的事項。命題通??梢詫懗伞叭绻?...那么....”的形式,其中“如果”引出的部分是條件,“那么”引出的部分是結論

      ④正確的命題稱為真命題,不正確的命題稱為假命題

      ⑤要說明一個命題是假命題,常??梢耘e出一個例子,使它具備命題的條件,而不具有命題的結論,這種例子稱為反例

      ⑥歐幾里得在編寫《原本》時,挑選了一部分數(shù)學名詞和一部分公認的真命題作為證實其他命題的出發(fā)點和依據(jù)。其中數(shù)學名詞稱為原名,公認的真命題稱為公理,除了公理外,其他命題的真假都需要通過演繹推理的方法進行判斷

      ⑦演繹推理的過程稱為證明,經過證明的真命題稱為定理,每個定理都只能用公理、定義和已經證明為真的命題來證明

      a.本套教科書選用九條基本事實作為證明的出發(fā)點和依據(jù),其中八條是:兩點確定一條直線

      b.兩點之間線段最短

      c.同一平面內,過一點有且只有一條直線與已知直線垂直

      d.兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行(簡述為:同位角相等,兩直線平行)

      e.過直線外一點有且只有一條直線與這條直線平行

      f.兩邊及其夾角分別相等的兩個三角形全等

      g.兩角及其夾邊分別相等的兩個三角形全等

      h.三邊分別相等的兩個三角形全等

      ⑧此外,數(shù)與式的運算律和運算法則、等式的有關性質,以及反映大小關系的有關性質都可以作為證明的依據(jù)

      ⑨ 定理:同角(等角)的補角相等

      同角(等角)的余角相等

      三角形的任意兩邊之和大于第三邊

      對頂角相等

      3、平行線的判定

      ① 定理:兩條直線被第三條直線所截,如果內錯角相等,那么這兩條直線平行,簡述為:內錯角相等,兩直線平行

      ② 定理:兩條直線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行,簡述為:同旁內角互補,兩直線平行。

      4、平行線的性質

      ① 定理:兩條平行直線被第三條直線所截,同位角相等。簡述為:兩直線平行,同位角相等

      ② 定理:兩條平行直線被第三條直線所截,內錯角相等。簡述為:兩直線平行,內錯角相等

      ③ 定理:兩條平行直線被第三條直線所截,同旁內角互補。簡述為:兩直線平行,同旁內角互補

      ④ 定理:平行于同一條直線的兩條直線平行

      5、三角形內角和定理

      ① 三角形內角和定理:三角形的內角和等于180°

      ② 定理:三角形的一個外角等于和它不相鄰的兩個內角的和

      定理:三角形的一個外角大于任何一個和它不相鄰的內角

      ③ 我們通過三角形的內角和定理直接推導出兩個新定理。像這樣,由一個基本事實或定理直接推出的定理,叫做這個基本事實或定理的推論,推論可以當定理使用。

      初二數(shù)學知識點梳理

      一、實數(shù)的概念及分類

      1、實數(shù)的分類

      一是分類是:正數(shù)、負數(shù)、0;

      另一種分類是:有理數(shù)、無理數(shù)

      將兩種分類進行組合:負有理數(shù),負無理數(shù),0,正有理數(shù),正無理數(shù)

      2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。

      在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:

      (1)開方開不盡的數(shù),如等;

      (2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;

      (3)有特定結構的數(shù),如0.1010010001…等;

      (4)某些三角函數(shù)值,如sin60o等

      二、實數(shù)的倒數(shù)、相反數(shù)和絕對值

      1、相反數(shù)

      實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應的點關于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。

      2、絕對值

      在數(shù)軸上,一個數(shù)所對應的點與原點的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

      3、倒數(shù)

      如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

      4、數(shù)軸

      規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。

      解題時要真正掌握數(shù)形結合的思想,理解實數(shù)與數(shù)軸的點是一一對應的,并能靈活運用。

      初二數(shù)學知識點歸納

      第十六章 分式

      一、定義:如果A、B表示兩個整式,并且B中含有字母,那么式子 叫做分式。

      二、分式基本性質:分式的分子與分母同乘或除以一個不等于0的整式,分式的值不變。

      三、分式計算:分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。

      分式除法法則:分式除以分式,把除式的分子、分母顛倒置后,與被除式相乘。

      分式乘方:分式乘方要把分子、分母分別乘方。

      四、整數(shù)指數(shù)冪:(1) (2)較小數(shù)的科學記數(shù)法;

      五、分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。(這個解是增根,原方程無解)。

      第十七章 反比例函數(shù)

      一、形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù);

      二、反比例函數(shù)的圖像屬于雙曲線;

      三、性質:當k>0時,雙曲線的兩支分別位于第一、第三象限,在每個象限內y值隨x值的增大而減小;

      當k<0時,雙曲線的兩支分別位于第二、第四象限,在每個象限內y值隨x值的增大而增大。

      第十八章 勾股定理

      一、勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么

      二、勾股定理逆定理:如果三角形三邊長a,b,c滿足 ,那么這個三角形是直角三角形。

      三、經過證明被確認正確的命題叫做定理。

      四、我們把題設、結論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)

      第十九章 四邊形

      一、平行四邊形:

      1、定義:有兩組對邊分別平行的四邊形叫做平行四邊形。

      2、性質:平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分。

      3、判定:(1)兩組對邊分別相等的四邊形是平行四邊形;

      (2)兩組對角分別相等的四邊形是平行四邊形;

      (3)對角線互相平分的四邊形是平行四邊形;

      (4)一組對邊平行且相等的四邊形是平行四邊形。

      (5)有兩組對邊分別平行的四邊形叫做平行四邊形。(定義)

      4、三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。

      二、矩形:

      1、定義:有一個角是直角的平行四邊形叫做矩形。

      2、性質:矩形的四個角都是直角;矩形的對角線平分且相等。

      3、判定:(1)有一個角是直角的平行四邊形叫做矩形。(定義)

      (2)對角線相等的平行四邊形是矩形。

      (3)有三個角是直角的四邊形是矩形。

      4、直角三角形斜邊上的中線等于斜邊的一半。

      三、菱形:

      1、定義:一組鄰邊相等的平行四邊形是菱形

      2、性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。

      3、判定:(1)一組鄰邊相等的平行四邊形是菱形。(定義)

      (2)對角線互相垂直的平行四邊形是菱形。

      (3)四條邊相等的四邊形是菱形。

      4、S菱形=底×高 S菱形= ab(a、b為兩條對角線)

      四、正方形:

      1、定義:有一組鄰邊相等的矩形是正方形。或有一個角是直角的菱形是正方形。

      2、性質:四條邊都相等,四個角都是直角;正方形既是矩形,又是菱形。

      3、判定:(1)鄰邊相等的矩形是正方形。

      (2)有一個角是直角的菱形是正方形。

      五、梯形:

      1、定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。

      2、等腰梯形定義:兩腰相等的梯形叫做等腰梯形。

      性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。

      判定:同一底上兩個角相等的梯形是等腰梯形;對角線相等的梯形是等腰梯形。

      3、梯形的中位線分別平行于上、下兩底,且等于上、下兩底和的一半。

      六、重心:

      1、線段的重心就是線段的中點。

      2、平行四邊形的重心是它的兩條對角線的交點。

      3、三角形的三條中線交于疑點,這一點就是三角形的重心。

      七、數(shù)學活動(教材115頁):

      1、折紙多60°、30°、15°的角證明方法(重點30°角)

      2、寬和長的比是 (約為0.618)的矩形叫做黃金矩形。

      第二十章 數(shù)據(jù)的分析

      一、加權平均數(shù):計算公式(教材125頁。)

      二、中位數(shù):將一組數(shù)據(jù)按照由小到大(大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。

      三、眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。

      四、極差:一組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。

      五、方差:

      1、計算公式: ( 表示 的平均數(shù))

      2、性質:方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小,就越穩(wěn)定。

      六、數(shù)據(jù)的收集與整理的步驟:

      1.收集數(shù)據(jù) 2.整理數(shù)據(jù) 3.描述數(shù)據(jù) 4.分析數(shù)據(jù) 5.撰寫調查報告

      初二數(shù)學知識點全總結人教版相關文章

      初二數(shù)學知識點整理

      初二數(shù)學知識點歸納梳理

      八年級數(shù)學必備知識點總結

      初中八年級數(shù)學知識點

      2022八年級數(shù)學課本知識點

      初二數(shù)學下冊知識點人教版

      人教版小升初數(shù)學總復習知識點歸納

      新人教版八年級數(shù)學上冊知識點歸納

      八年級數(shù)學上冊對稱軸圖形的相關知識點總結

      人教版初中數(shù)學知識點最新

      1588995