初一數(shù)學(xué)下冊知識點總結(jié)
任何科目學(xué)習(xí)方法其實都是一樣的,不斷的記憶與練習(xí),使知識刻在腦海里,數(shù)學(xué)作為最燒腦的科目之一,需要不斷的練習(xí)。下面是小編為大家整理的初一數(shù)學(xué)下冊知識點,歡迎閱讀學(xué)習(xí)。
初一數(shù)學(xué)下冊知識點總結(jié)
1、整式的乘除的公式運用(六條)及逆運用(數(shù)的計算)。
(1)an·am(2)(am)n=(3)(ab)n=4)am÷an(5)a0(a≠0)(6)a-p==
2、單項式與單項式、多項式相乘的法則。
3、整式的乘法公式(兩條)。
平方差公式:(a+b)(a-b)=
完全平方公式:(a+b)2(a-b)2
常用公式:(x+m)(x+n)=
4、單項式除以單項式,多項式除以單項式(轉(zhuǎn)換單項式除以單項式)。
5、互為余角和互為補角和
6、兩直線平行的條件:(角的關(guān)系線的平行)
①相等,兩直線平行;
②相等,兩直線平行;
③互補,兩直線平行.
7、平行線的性質(zhì):兩直線平行。(線的平行
8、能判別變量中的自變量和因變量,會列列關(guān)系式(因變量=自變量與常量的關(guān)系)
9、變量中的圖象法,注意:(1)橫、縱坐標的對象。(2)起點、終點不同表示什么意義(3)圖象交點表示什么意義(4)會求平均值。
10、三角形
(1)三邊關(guān)系:角的關(guān)系)
(2)內(nèi)角關(guān)系:
(3)三角形的三條重要線段:
(4)三角形全等的判別方法:(注意:公共邊、邊的公共部分對頂角、公共角、角的公共部分)
(5)全等三角形的性質(zhì):
(6)等腰三角形:(a)知邊求邊、周長方法(b)知角求角方法(c)三線合一:
(7)等邊三角形:
11、會判軸對稱圖形,會根據(jù)畫對稱圖形,(或在方格中畫)
12、常見的軸對稱圖形有:
13、(1)等腰三角形:對稱軸,性質(zhì)
(2)線段:對稱軸,性質(zhì)
(3)角:對稱軸,性質(zhì)
14、尺規(guī)作圖:(1)作一線段等已知線段(2)作角已知角(3)作線段垂直平分線
(4)作角的平分線(5)作三角形
15、事件的分類:,會求各種事件的概率
(1)摸球:P(摸某種球)=
(2)摸牌:P(摸某種牌)=
(3)轉(zhuǎn)盤:P(指向某個區(qū)域)=
(4)拋骰子:P(拋出某個點數(shù))=
(5)方格(面積):P(停留某個區(qū)域)=
16、必然事件不可能事件,不確定事件
17、方法歸納:(1)求邊相等可以利用
(2)求角相等可以利用。
(3)計算簡便可以利用。
18、注意復(fù)習(xí):合并同類項的法則,科學(xué)記數(shù)法,解一元一次方程,絕對值。
初一數(shù)學(xué)下冊知識點總結(jié)
不等式與不等式組
1.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
2.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
3.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
4.一元一次不等式組的解集:一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
5.不等式的性質(zhì):
不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個數(shù)(或式子),不等號的方向不變。
不等式的基本性質(zhì)2:不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變。
不等式的基本性質(zhì)3:不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變。
點、線、面、體知識點
1.幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。
2.點動成線,線動成面,面動成體。
點、直線、射線和線段的表示
在幾何里,我們常用字母表示圖形。
一個點可以用一個大寫字母表示。
一條直線可以用一個小寫字母表示。
一條射線可以用端點和射線上另一點來表示。
一條線段可用它的端點的兩個大寫字母來表示。
注意:
(1)表示點、直線、射線、線段時,都要在字母前面注明點、直線、射線、線段。
(2)直線和射線無長度,線段有長度。
(3)直線無端點,射線有一個端點,線段有兩個端點。
(4)點和直線的位置關(guān)系有線面兩種:
①點在直線上,或者說直線經(jīng)過這個點。
②點在直線外,或者說直線不經(jīng)過這個點。
初一數(shù)學(xué)下冊知識點總結(jié)
相交線與平行線知識要點
1、在同一平面內(nèi),兩條直線的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。
2、在同一平面內(nèi),不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。
3、兩條直線相交所構(gòu)成的四個角中,有公共頂點且有一條公共邊的兩個角是
鄰補角。鄰補角的性質(zhì):鄰補角互補。如圖1所示,與互為鄰補角,
與互為鄰補角。+=180°;+=180°;+=180°;+=180°。
4、兩條直線相交所構(gòu)成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質(zhì):對頂角相等。如圖1所示,與互為對頂角。=;=。
5、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當=90°時,⊥。
垂線的性質(zhì):
性質(zhì)1:過一點有且只有一條直線與已知直線垂直。
性質(zhì)2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質(zhì)3:如圖2所示,當a⊥b時,====90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內(nèi)錯角、同旁內(nèi)角基本特征:
①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側(cè),這樣
的兩個角叫同位角。圖3中,共有對同位角:與是同位角;
與是同位角;與是同位角;與是同位角。
②在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個角叫內(nèi)錯角。圖3中,共有對內(nèi)錯角:與是內(nèi)錯角;與是內(nèi)錯角。
③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內(nèi)角。圖3中,共有對同旁內(nèi)角:與是同旁內(nèi)角;與是同旁內(nèi)角。
7、平行公理:經(jīng)過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質(zhì):
性質(zhì)1:兩直線平行,同位角相等。如圖4所示,如果a∥b,則=;=;=;=。
性質(zhì)2:兩直線平行,內(nèi)錯角相等。如圖4所示,如果a∥b,則=;=。
性質(zhì)3:兩直線平行,同旁內(nèi)角互補。如圖4所示,如果a∥b,則+=180°;+=180°。
性質(zhì)4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則∥。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果=
或=或=或=,則a∥b。
判定2:內(nèi)錯角相等,兩直線平行。如圖5所示,如果=或=,則a∥b。
判定3:同旁內(nèi)角互補,兩直線平行。如圖5所示,如果+=180°;
+=180°,則a∥b。
判定4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則∥。
9、判斷一件事情的語句叫命題。命題由題設(shè)和結(jié)論兩部分組成,有真命題和假命題之分。如果題設(shè)成立,那么結(jié)論一定成立,這樣的命題叫真命題;如果題設(shè)成立,那么結(jié)論不一定成立,這樣的命題叫假命題。真命題的正確性是經(jīng)過推理證實的,這樣的真命題叫定理,它可以作為繼續(xù)推理的依據(jù)。
10、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
平移后,新圖形與原圖形的形狀和大小完全相同。平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應(yīng)點。
平移性質(zhì):平移前后兩個圖形中①對應(yīng)點的連線平行且相等;②對應(yīng)線段相等;③對應(yīng)角相等。
一、主動預(yù)習(xí)
預(yù)習(xí)的目的是主動獲取新知識的過程,有助于調(diào)動學(xué)習(xí)積極主動性,新知識在未講解之前,認真閱讀教材,養(yǎng)成主動預(yù)習(xí)的習(xí)慣,是獲得數(shù)學(xué)知識的重要手段。
因此,培養(yǎng)自學(xué)能力,在老師的引導(dǎo)下學(xué)會看書,帶著老師精心設(shè)計的思考題去預(yù)習(xí)。如自學(xué)例題時,要弄清例題講的什么內(nèi)容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。抓住這些重要問題,動腦思考,步步深入,學(xué)會運用已有的知識去獨立探究新的知識。
二、主動思考
很多同學(xué)在聽課的過程中,只是簡簡單單的聽,不能主動思考,這樣遇到實際問題時,會無從下手,不知如何應(yīng)用所學(xué)的知識去解答問題。主要原因還是聽課過程中不思考惹的禍。除了我們跟著老師的思路走,還要多想想為什么要這么定義,這樣解題的好處是什么,這樣主動去想,不僅能讓我們更加認真的聽課,也能激發(fā)對某些知識的興趣,更有助于學(xué)習(xí)。靠著老師的引導(dǎo),去思考解題的思路;答案真的不重要;重要的是方法!
三、善于總結(jié)規(guī)律
解答數(shù)學(xué)問題總的講是有規(guī)律可循的。在解題時,要注意總結(jié)解題規(guī)律,在解決每一道練習(xí)題后,要注意回顧以下問題:
(1)本題最重要的特點是什么?
(2)解本題用了哪些基本知識與基本圖形?
(3)本題你是怎樣觀察、聯(lián)想、變換來實現(xiàn)轉(zhuǎn)化的?
(4)解本題用了哪些數(shù)學(xué)思想、方法?
(5)解本題最關(guān)鍵的一步在那里?
(6)你做過與本題類似的題目嗎?在解法、思路上有什么異同?
(7)本題你能發(fā)現(xiàn)幾種解法?其中哪一種最優(yōu)?那種解法是特殊技巧?你能總結(jié)在什么情況下采用嗎?
把這一連串的問題貫穿于解題各環(huán)節(jié)中,逐步完善,持之以恒,孩子解題的心理穩(wěn)定性和應(yīng)變能力就可以不斷提高,思維能力就會得到鍛煉和發(fā)展。
四、拓寬解題思路
數(shù)學(xué)解題不要局限于本題,而要做到舉一反三、多思多想,解答完一個題目,要想想有沒有其他更加簡便的方法,這樣能夠幫助大家拓寬思路,這樣在以后的做題過程中就會有更多的選擇。
五、必須要有錯題本
說到錯題本不少同學(xué)都覺的自己的記憶力好,不需要錯題本就能記住,這是一種“錯覺”,每個人都有這種感覺,等到題目增多,學(xué)習(xí)內(nèi)容加深,這時就會發(fā)現(xiàn)自己力不從心了,因此,錯題本能夠隨時記錄自己的知識短板,幫助強化知識體系,有助于提升學(xué)習(xí)效率。有很多學(xué)霸都是因為積極使用了錯題本,而考取了高分。
六、五個方面思考
“1×5”學(xué)習(xí)法,就是做一道題,要從五個方面思考,這點可以結(jié)合前面說到的“總結(jié)規(guī)律”“拓展思路”。五個方面分別為:
①這道題考查的知識點是什么。
②為什么要這樣做。
③我是如何想到的。
④還可以怎樣做,有其它方法嗎?
⑤一題多變看看它有幾種變化的形式
千萬不要覺得麻煩,學(xué)習(xí)習(xí)慣的培養(yǎng)最難的就是最初的一個月,這就像火箭升空一樣,最難的就是點火起飛階段,所以,一旦養(yǎng)成了良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣和思維方式,在今后的學(xué)習(xí)中就會非常的輕松。
七、獨立完成作業(yè)
現(xiàn)在很多學(xué)生用一些APP來幫助寫作業(yè),找個照片就有答案,或者是抄襲其他同學(xué)的作業(yè),這可以分兩種情況來說,一種是為了圖快、求速度,如果經(jīng)常這樣會養(yǎng)成不良的審題習(xí)慣,容易走馬觀花、粗心大意。還有一種是為了圖方便,這會導(dǎo)致同學(xué)們養(yǎng)成“怕麻煩”的心理,一旦題目有些難度,自己就開始心煩意亂,思路模糊,因此,大家一定要養(yǎng)成良好的獨立完成作業(yè)的習(xí)慣。
初一數(shù)學(xué)下冊知識點總結(jié)相關(guān)文章:
★ 初一數(shù)學(xué)下冊基本知識點總結(jié)
★ 初一數(shù)學(xué)下冊知識點歸納總結(jié)
★ 初一下冊數(shù)學(xué)重點知識點總結(jié)歸納