高二數(shù)學(xué)最新知識(shí)點(diǎn)總結(jié)歸納
只有高效的學(xué)習(xí)方法,才可以很快的掌握知識(shí)的重難點(diǎn)。有效的讀書(shū)方式根據(jù)規(guī)律掌握方法,不要一來(lái)就死記硬背,先找規(guī)律,再記憶,然后再學(xué)習(xí),就能很快的掌握知識(shí)。下面是小編給大家?guī)?lái)的高二數(shù)學(xué)最新知識(shí)點(diǎn)總結(jié)歸納,以供大家參考!
高二數(shù)學(xué)最新知識(shí)點(diǎn)總結(jié)歸納
柱體、錐體、臺(tái)體的表面積與體積
(1)幾何體的表面積為幾何體各個(gè)面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,為斜高,l為母線)
(3)柱體、錐體、臺(tái)體的體積公式
(4)球體的表面積和體積公式:V=;S=
4、空間點(diǎn)、直線、平面的位置關(guān)系
公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。
應(yīng)用:判斷直線是否在平面內(nèi)
用符號(hào)語(yǔ)言表示公理1:
公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線
符號(hào):平面α和β相交,交線是a,記作α∩β=a。
符號(hào)語(yǔ)言:
公理2的作用:
①它是判定兩個(gè)平面相交的方法。
②它說(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線公共點(diǎn)。
③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。
公理3:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。
推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理3及其推論作用:
①它是空間內(nèi)確定平面的依據(jù)
②它是證明平面重合的依據(jù)
公理4:平行于同一條直線的兩條直線互相平行
空間直線與直線之間的位置關(guān)系
①異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線
②異面直線性質(zhì):既不平行,又不相交。
③異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線
④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直。
求異面直線所成角步驟:
A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。
B、證明作出的角即為所求角
C、利用三角形來(lái)求角
(7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。
(8)空間直線與平面之間的位置關(guān)系
直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).
三種位置關(guān)系的符號(hào)表示:aαa∩α=Aa‖α
(9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);α‖β
相交——有一條公共直線。α∩β=b
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))
1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。
二、函數(shù)(30課時(shí),12個(gè))
1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對(duì)數(shù);10.對(duì)數(shù)的運(yùn)算性質(zhì);11.對(duì)數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。
三、數(shù)列(12課時(shí),5個(gè))
1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式。
四、三角函數(shù)(46課時(shí),17個(gè))
1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。
五、平面向量(12課時(shí),8個(gè))
1.向量;2.向量的加法與減法;3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移。
六、不等式(22課時(shí),5個(gè))
1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對(duì)值的不等式。
七、直線和圓的方程(22課時(shí),12個(gè))
1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡(jiǎn)單線性規(guī)劃問(wèn)題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程。
八、圓錐曲線(18課時(shí),7個(gè))
1.橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡(jiǎn)單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡(jiǎn)單幾何性質(zhì)。
九、直線、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))
1.平面及基本性質(zhì);2.平面圖形直觀圖的畫(huà)法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。
十、排列、組合、二項(xiàng)式定理(18課時(shí),8個(gè))
1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個(gè)性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開(kāi)式的性質(zhì)。
十一、概率(12課時(shí),5個(gè))
1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨(dú)立事件同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn)。
選修Ⅱ(24個(gè))
十二、概率與統(tǒng)計(jì)(14課時(shí),6個(gè))
1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸。
十三、極限(12課時(shí),6個(gè))
1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性。
十四、導(dǎo)數(shù)(18課時(shí),8個(gè))
1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見(jiàn)函數(shù)的導(dǎo)數(shù);4.兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的值和最小值。
十五、復(fù)數(shù)(4課時(shí),4個(gè))
1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法;4.復(fù)數(shù)的一元二次方程和二項(xiàng)方程的解法。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。
面積公式
若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:
S=ab/2。
且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:
S=ch/2=c2/4。
等腰直角三角形是一種特殊的三角形,具有所有三角形的.性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。
高二數(shù)學(xué)最新知識(shí)點(diǎn)總結(jié)歸納相關(guān)文章:
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2020
★ 高二數(shù)學(xué)知識(shí)的重點(diǎn)要點(diǎn)的總結(jié)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)及公式整理
★ 高二數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)梳理
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版
★ 高二年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及復(fù)習(xí)資料
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(人教版)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)