亚洲高清vr播放在线观看,欧美亚洲精品免费,欧美日韩天堂在线视频,午夜福利小视频

      學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高考輔導(dǎo)資料>

      高中數(shù)學(xué)數(shù)列知識點

      時間: 維維0 分享

      數(shù)列是以正整數(shù)集為定義域的函數(shù),是一列有序的數(shù)。數(shù)列中的每一個數(shù)都叫做這個數(shù)列的項。下面小編給大家分享一些數(shù)學(xué)數(shù)列知識點,希望能夠幫助大家,歡迎閱讀分享!

      數(shù)學(xué)數(shù)列知識點1

      等差數(shù)列

      1.等差數(shù)列通項公式

      an=a1+(n-1)d

      n=1時a1=S1

      n≥2時an=Sn-Sn-1

      an=kn+b(k,b為常數(shù))推導(dǎo)過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b

      2.等差中項

      由三個數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡單的等差數(shù)列。這時,A叫做a與b的等差中項(arithmeticmean)。

      有關(guān)系:A=(a+b)÷2

      3.前n項和

      倒序相加法推導(dǎo)前n項和公式:

      Sn=a1+a2+a3+·····+an

      =a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

      Sn=an+an-1+an-2+······+a1

      =an+(an-d)+(an-2d)+······+[an-(n-1)d]②

      由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)

      ∴Sn=n(a1+an)÷2

      等差數(shù)列的前n項和等于首末兩項的和與項數(shù)乘積的一半:

      Sn=n(a1+an)÷2=na1+n(n-1)d÷2

      Sn=dn2÷2+n(a1-d÷2)

      亦可得

      a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

      an=2sn÷n-a1

      有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

      4.等差數(shù)列性質(zhì)

      一、任意兩項am,an的關(guān)系為:

      an=am+(n-m)d

      它可以看作等差數(shù)列廣義的通項公式。

      二、從等差數(shù)列的定義、通項公式,前n項和公式還可推出:

      a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N--

      三、若m,n,p,q∈N--,且m+n=p+q,則有am+an=ap+aq

      四、對任意的k∈N--,有

      Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數(shù)列。

      數(shù)學(xué)數(shù)列知識點2

      等比數(shù)列

      1.等比中項

      如果在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項。

      有關(guān)系:

      注:兩個非零同號的實數(shù)的等比中項有兩個,它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

      2.等比數(shù)列通項公式

      an=a1--q’(n-1)(其中首項是a1,公比是q)

      an=Sn-S(n-1)(n≥2)

      前n項和

      當(dāng)q≠1時,等比數(shù)列的前n項和的公式為

      Sn=a1(1-q’n)/(1-q)=(a1-a1--q’n)/(1-q)(q≠1)

      當(dāng)q=1時,等比數(shù)列的前n項和的公式為

      Sn=na1

      3.等比數(shù)列前n項和與通項的關(guān)系

      an=a1=s1(n=1)

      an=sn-s(n-1)(n≥2)

      4.等比數(shù)列性質(zhì)

      (1)若m、n、p、q∈N--,且m+n=p+q,則am·an=ap·aq;

      (2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。

      (3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

      (4)等比中項:q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項。

      記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

      另外,一個各項均為正數(shù)的等比數(shù)列各項取同底指數(shù)冪后構(gòu)成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

      (5)等比數(shù)列前n項之和Sn=a1(1-q’n)/(1-q)

      (6)任意兩項am,an的關(guān)系為an=am·q’(n-m)

      (7)在等比數(shù)列中,首項a1與公比q都不為零。

      數(shù)學(xué)數(shù)列知識點3

      數(shù)列的相關(guān)概念

      1.數(shù)列概念

      ①數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個定義域為正整數(shù)集N--或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。

      ②用函數(shù)的觀點認(rèn)識數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數(shù)列和以遞推公式給出數(shù)列。

      ③函數(shù)不一定有解析式,同樣數(shù)列也并非都有通項公式。

      高中數(shù)學(xué)數(shù)列知識點相關(guān)文章

      高中數(shù)學(xué)必修5數(shù)列知識點總結(jié)

      高考數(shù)學(xué)復(fù)習(xí)數(shù)列知識點匯總

      高一數(shù)學(xué)知識點全面總結(jié)

      高中數(shù)學(xué)知識點全總結(jié)

      高中數(shù)學(xué)等差數(shù)列知識點匯編

      高一數(shù)學(xué)等比數(shù)列知識點總結(jié)

      高二數(shù)學(xué)必修5數(shù)列知識點

      高中數(shù)學(xué)復(fù)習(xí)知識點

      高中數(shù)學(xué)必考知識點歸納整理

      高中數(shù)學(xué)數(shù)列知識點

      數(shù)列是以正整數(shù)集為定義域的函數(shù),是一列有序的數(shù)。數(shù)列中的每一個數(shù)都叫做這個數(shù)列的項。下面小編給大家分享一些數(shù)學(xué)數(shù)列知識點,希望能夠幫助大家,歡迎閱讀分享!數(shù)學(xué)數(shù)列知識點1等差數(shù)列1.等差數(shù)列通項公
      推薦度:
      點擊下載文檔文檔為doc格式
      888511