高中數(shù)學(xué)知識點全總結(jié)
高中數(shù)學(xué)知識點全總結(jié)有哪些?學(xué)習(xí)的效率和品質(zhì)直接關(guān)乎考試的成敗,數(shù)學(xué)更是高考中能夠決定成敗的一門。那么為了提高學(xué)習(xí)效率,一起來看看高中數(shù)學(xué)知識點全總結(jié),歡迎查閱!
目錄
高中數(shù)學(xué)知識點歸納總結(jié)
第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。
主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。
第二:平面向量和三角函數(shù)。
重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。
第三:數(shù)列。
數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。
第四:空間向量和立體幾何。
在里面重點考察兩個方面:一個是證明;一個是計算。
第五:概率和統(tǒng)計。
這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個方面,第一……等可能的概率,第二………事件,第三是獨立事件,還有獨立重復(fù)事件發(fā)生的概率。
第六:解析幾何。
這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量最高的題,當(dāng)然這一類題,我總結(jié)下面五類常考的題型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容??忌鷳?yīng)該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是2008年高考已經(jīng)考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當(dāng)然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的`原因,往往有這個原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。
第七:押軸題。
考生在備考復(fù)習(xí)時,應(yīng)該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。
參數(shù)方程定義
一般的,在平面直角坐標(biāo)系中,如果曲線上任意一點的坐標(biāo)x,y都是某個變數(shù)t的函數(shù)x=f(t)、y=g(t)
并且對于t的每一個允許值,由上述方程組所確定的點M(x,y)都在這條曲線上,那么上述方程則為這條曲線的參數(shù)方程,聯(lián)系x,y的變數(shù)t叫做變參數(shù),簡稱參數(shù),相對于參數(shù)方程而言,直接給出點的坐標(biāo)間關(guān)系的方程叫做普通方程。(注意:參數(shù)是聯(lián)系變數(shù)x,y的橋梁,可以是一個有物理意義和幾何意義的變數(shù),也可以是沒有實際意義的變數(shù)。
參數(shù)方程
圓的參數(shù)方程x=a+rcosθy=b+rsinθ(a,b)為圓心坐標(biāo)r為圓半徑θ為參數(shù)
橢圓的參數(shù)方程x=acosθy=bsinθa為長半軸長b為短半軸長θ為參數(shù)
雙曲線的參數(shù)方程x=asecθ(正割)y=btanθa為實半軸長b為虛半軸長θ為參數(shù)
拋物線的參數(shù)方程x=2pt?y=2ptp表示焦點到準(zhǔn)線的距離t為參數(shù)
直線的參數(shù)方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直線經(jīng)過(x',y'),且傾斜角為a,t為參數(shù)。
數(shù)學(xué)是一們基礎(chǔ)學(xué)科,我們從小就開始接觸到它?,F(xiàn)在我們已經(jīng)步入高中,由于高中數(shù)學(xué)對知識的難度、深度、廣度要求更高,有一部分同學(xué)由于不適應(yīng)這種變化,數(shù)學(xué)成績總是不如人意。甚至產(chǎn)生這樣的困惑:“我在初中時數(shù)學(xué)成績很好,可現(xiàn)在怎么了?”其實,學(xué)習(xí)是一個不斷接收新知識的過程。正是由于你在進入高中后學(xué)習(xí)方法或學(xué)習(xí)態(tài)度的影響,才會造成學(xué)得累死而成績不好的后果。那么,究竟該如何學(xué)好高中數(shù)學(xué)呢?以下我談?wù)勎业母咧袛?shù)學(xué)學(xué)習(xí)心得。
一、 認(rèn)清學(xué)習(xí)的能力狀態(tài)。
1、 心理素質(zhì)。我們在高中學(xué)習(xí)環(huán)境下取決于我們是否具有面對挫折、冷靜分析問題的辦法。當(dāng)我們面對困難時不應(yīng)產(chǎn)生畏懼感,面對失敗時不應(yīng)灰心喪氣,而要勇于正視自己,及時作出總結(jié)教訓(xùn),改變學(xué)習(xí)方法。
2、 學(xué)習(xí)方式、習(xí)慣的反思與認(rèn)識。(1) 學(xué)習(xí)的主動性。我們在進入高中以后,不能還像初中時那樣有很強的依賴心理,不訂學(xué)習(xí)計劃,坐等上課,課前不預(yù)習(xí),上課忙于記筆記而忽略了真正的聽課,顧此失彼,被動學(xué)習(xí)。(2) 學(xué)習(xí)的條理性。我們在每學(xué)習(xí)一課內(nèi)容時,要學(xué)會將知識有條理地分為若干類,剖析概念的內(nèi)涵外延,重點難點要突出。不要忙于記筆記,而對要點沒有聽清楚或聽不全。筆記記了一大摞,問題也有一大堆。如果還不能及時鞏固、總結(jié),而忙于套著題型趕作業(yè),對概念、定理、公式不能理解而死記硬背,則會事倍功半,收效甚微。(3) 忽視基礎(chǔ)。在我身邊,常有些“自我感覺良好”的同學(xué),忽視基礎(chǔ)知識、基本技能和基本方法,不能牢牢地抓住課本,而是偏重于對難題的攻解,好高騖遠,重“量”而輕“質(zhì)”,陷入題海,往往在考試中不是演算錯誤就是中途“卡殼”。(4) 不良習(xí)慣。主要有對答案,卷面書寫不工整,格式不規(guī)范,不相信自己的結(jié)論,缺乏對問題解決的信心和決心,遇到問題不能獨立思考,養(yǎng)成一種依賴于老師解說的心理,做作業(yè)不講究效率,學(xué)習(xí)效率不高。
二、 努力提高自己的學(xué)習(xí)能力。
1、 抓要點提高學(xué)習(xí)效率。(1) 抓教材處理。正所謂“萬變不離其中”。要知道,教材始終是我們學(xué)習(xí)的根本依據(jù)。教學(xué)是活的,思維也是活的,學(xué)習(xí)能力是隨著知識的積累而同時形成的。我們要通過老師教學(xué),理解所學(xué)內(nèi)容在教材中的地位,并將前后知識聯(lián)系起來,把握教材,才能掌握學(xué)習(xí)的主動性。(2) 抓問題暴露。對于那些典型的問題,必須及時解決,而不能把問題遺留下來,而要對遺留的問題及時、有效的解決。(3) 抓思維訓(xùn)練。數(shù)學(xué)的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時的訓(xùn)練中,要注重一個思維的過程,學(xué)習(xí)能力是在不斷運用中才能培養(yǎng)出來的。(5) 抓45分鐘課堂效率。我們學(xué)習(xí)的大部分時間都在學(xué)校,如果不能很好地抓住課堂時間,而寄希望于課外去補,則會使學(xué)習(xí)效率大打折扣。
高考數(shù)學(xué)易錯的知識點總結(jié)
求函數(shù)奇偶性的常見錯誤
錯因分析:求函數(shù)奇偶性的常見錯誤有求錯函數(shù)定義域或是忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當(dāng)?shù)?。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域區(qū)間關(guān)于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點對稱的前提下,再根據(jù)奇偶函數(shù)的定義進行判斷,在用定義進行判斷時要注意自變量在定義域區(qū)間內(nèi)的任意性。
抽象函數(shù)中推理不嚴(yán)密致誤
錯因分析:很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計出來的,在解決問題時,可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。解答抽象函數(shù)問題要注意特殊賦值法的應(yīng)用,通過特殊賦值可以找到函數(shù)的不變性質(zhì),這個不變性質(zhì)往往是進一步解決問題的突破口。抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過程要層次分明,書寫規(guī)范。
函數(shù)零點定理使用不當(dāng)致誤
錯因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c∈(a,b),使得f(c)=0,這個c也是方程f(c)=0的根,這個結(jié)論我們一般稱之為函數(shù)的零點定理。函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”,函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點時要注意這個問題。
混淆兩類切線致誤
錯因分析:曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當(dāng)然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。因此求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。
混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤
錯因分析:對于一個函數(shù)在某個區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會出錯。研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時一定要注意:一個函數(shù)的導(dǎo)函數(shù)在某個區(qū)間上單調(diào)遞增(減)的充要條件是這個函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
導(dǎo)數(shù)與極值關(guān)系不清致誤
錯因分析:在使用導(dǎo)數(shù)求函數(shù)極值時,很容易出現(xiàn)的錯誤就是求出使導(dǎo)函數(shù)等于0的點,而沒有對這些點左右兩側(cè)導(dǎo)函數(shù)的符號進行判斷,誤以為使導(dǎo)函數(shù)等于0的點就是函數(shù)的極值點。出現(xiàn)這些錯誤的原因是對導(dǎo)數(shù)與極值關(guān)系不清??蓪?dǎo)函數(shù)在一個點處的.導(dǎo)函數(shù)值為零只是這個函數(shù)在此點處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時一定要注意對極值點進行檢驗。
用錯基本公式致誤
錯因分析:等差數(shù)列的首項為a1、公差為d,則其通項公式an=a1+(n-1)d,前n項和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項為a1、公比為q,則其通項公式an=a1pn-1,當(dāng)公比q≠1時,前n項和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時,前n項和公式Sn=na1。在數(shù)列的基礎(chǔ)性試題中,等差數(shù)列、等比數(shù)列的這幾個公式是解題的根本,用錯了公式,解題就失去了方向。
an,Sn關(guān)系不清致誤
錯因分析:在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在關(guān)系:這個關(guān)系是對任意數(shù)列都成立的,但要注意的是這個關(guān)系式是分段的,在n=1和n≥2時這個關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關(guān)系式時要牢牢記住其“分段”的特點。當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時,這兩者之間可以進行相互轉(zhuǎn)換,知道了an的具體表達式可以通過數(shù)列求和的方法求出Sn,知道了Sn可以求出an,解題時要注意體會這種轉(zhuǎn)換的相互性。
對等差、等比數(shù)列的性質(zhì)理解錯誤
錯因分析:等差數(shù)列的前n項和在公差不為0時是關(guān)于n的常數(shù)項為0的二次函數(shù)。一般地,有結(jié)論“若數(shù)列{an}的前N項和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N_)是等差數(shù)列。解決這類題目的一個基本出發(fā)點就是考慮問題要全面,把各種可能性都考慮進去,認(rèn)為正確的命題給以證明,認(rèn)為不正確的命題舉出反例予以駁斥。在等比數(shù)列中公比等于-1時是一個很特殊的情況,在解決有關(guān)問題時要注意這個特殊情況。
遺忘空集致誤
錯因分析:由于空集是任何非空集合的真子集,因此,對于集合B高三經(jīng)典糾錯筆記:數(shù)學(xué)A,就有B=A,φ≠B高三經(jīng)典糾錯筆記:數(shù)學(xué)A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導(dǎo)致解題結(jié)果錯誤。尤其是在解含有參數(shù)的集合問題時,更要充分注意當(dāng)參數(shù)在某個范圍內(nèi)取值時所給的集合可能是空集這種情況。空集是一個特殊的集合,由于思維定式的原因,考生往往會在解題中遺忘了這個集合,導(dǎo)致解題錯誤或是解題不全面。
忽視集合元素的三性致誤
錯因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。在解題時也可以先確定字母參數(shù)的范圍后,再具體解決問題。
四種命題的結(jié)構(gòu)不明致誤
錯因分析:如果原命題是“若 A則B”,則這個命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價的命題,即“原命題和它的逆否命題等價,否命題與逆命題等價”。在解答由一個命題寫出該命題的其他形式的命題時,一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價關(guān)系。另外,在否定一個命題時,要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a ,b都是奇數(shù)”。
充分必要條件顛倒致誤
錯因分析:對于兩個條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。
邏輯聯(lián)結(jié)詞理解不準(zhǔn)致誤
錯因分析:在判斷含邏輯聯(lián)結(jié)詞的命題時很容易因為理解不準(zhǔn)確而出現(xiàn)錯誤,在這里我們給出一些常用的判斷方法,希望對大家有所幫助:p∨q真<=>p真或q真,命題p∨q假<=>p假且q假(概括為一真即真);命題p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括為一假即假);┐p真<=>p假,┐p假<=>p真(概括為一真一假)。
求函數(shù)定義域忽視細節(jié)致誤
錯因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。在求一般函數(shù)定義域時要注意下面幾點:(1)分母不為0;(2)偶次被開放式非負(fù);(3)真數(shù)大于0;(4)0的0次冪沒有意義。函數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時不要忘記了這點。對于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。
帶有絕對值的函數(shù)單調(diào)性判斷錯誤
錯因分析:帶有絕對值的函數(shù)實質(zhì)上就是分段函數(shù),對于分段函數(shù)的單調(diào)性,有兩種基本的判斷方法:一是在各個段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,最后對各個段上的單調(diào)區(qū)間進行整合;二是畫出這個分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)進行直觀的判斷。研究函數(shù)問題離不開函數(shù)圖象,函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),在研究函數(shù)問題時要時時刻刻想到函數(shù)的圖象,學(xué)會從函數(shù)圖象上去分析問題,尋找解決問題的方案。對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,千萬記住不要使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
高中文科數(shù)學(xué)知識點
考點一:集合與簡易邏輯
集合部分一般以選擇題出現(xiàn),屬容易題。重點考查集合間關(guān)系的理解和認(rèn)識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛?、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數(shù)學(xué)解題過程和邏輯推理??键c二:函數(shù)與導(dǎo)數(shù)
函數(shù)是高考的重點內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個數(shù)問題、不等式的證明等問題。
考點三:三角函數(shù)與平面向量
一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點”題型.
考點四:數(shù)列與不等式
不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應(yīng)用等,通常會在小題中設(shè)置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目.
考點五:立體幾何與空間向量
一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。
考點六:解析幾何
一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。
考點七:算法復(fù)數(shù)推理與證明
高考對算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”.考查的熱點是流程圖的識別與算法語言的閱讀理解.算法與數(shù)列知識的網(wǎng)絡(luò)交匯命題是考查的主流.復(fù)數(shù)考查的重點是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數(shù)學(xué)歸納法可能作為解答題的一小問.
高中數(shù)學(xué)基礎(chǔ)知識
1、基本初等函數(shù)
指數(shù)、對數(shù)、冪函數(shù)三大函數(shù)的運算性質(zhì)及圖像
函數(shù)的幾大要素和相關(guān)考點基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點等等。關(guān)于這三大函數(shù)的運算公式,多記多用,多做一點練習(xí),基本就沒問題。
函數(shù)圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數(shù)圖像,定義域、值域、零點等等。對于冪函數(shù)還要搞清楚當(dāng)指數(shù)冪大于一和小于一時圖像的不同及函數(shù)值的大小關(guān)系,這也是常考點。另外指數(shù)函數(shù)和對數(shù)函數(shù)的對立關(guān)系及其相互之間要怎樣轉(zhuǎn)化等問題,需要著重回看課本例題。
2、函數(shù)的應(yīng)用
這一章主要考是函數(shù)與方程的結(jié)合,其實就是函數(shù)的零點,也就是函數(shù)圖像與X軸的交點。這三者之間的轉(zhuǎn)化關(guān)系是這一章的重點,要學(xué)會在這三者之間靈活轉(zhuǎn)化,以求能最簡單的解決問題。關(guān)于證明零點的方法,直接計算加得必有零點,連續(xù)函數(shù)在x軸上方下方有定義則有零點等等,這些難點對應(yīng)的證明方法都要記住,多練習(xí)。二次函數(shù)的零點的Δ判別法,這個需要你看懂定義,多畫多做題。
3、空間幾何
三視圖和直觀圖的繪制不算難,但是從三視圖復(fù)原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學(xué)生特別是空間感弱的學(xué)生多看書上的例圖,把實物圖和平面圖結(jié)合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。
在做題時結(jié)合草圖是有必要的,不能單憑想象。后面的錐體、柱體、臺體的表面積和體積,把公式記牢問題就不大。
4、點、直線、平面之間的位置關(guān)系
這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學(xué)生多看圖。自己畫草圖的時候要嚴(yán)格注意好實線虛線,這是個規(guī)范性問題。
關(guān)于這一章的內(nèi)容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質(zhì),同時能用圖形語言、文字語言、數(shù)學(xué)表達式表示出來。只要這些全部過關(guān)這一章就解決了一大半。這一章的難點在于二面角這個概念,大多同學(xué)即使知道有這個概念,也無法理解怎么在二面里面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什么捷徑可走。
5、圓與方程
能熟練地把一般式方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方后定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關(guān)系來判斷點與圓、直線與圓、圓與圓的位置關(guān)系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。
6、三角函數(shù)
考試必在這一塊出題,且題量不小!誘導(dǎo)公式和基本三角函數(shù)圖像的一些性質(zhì),沒有太大難度,只要會畫圖就行。難度都在三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相上,及根據(jù)最值計算A、B的值和周期,及恒等變化時的圖像及性質(zhì)變化,這部分的知識點內(nèi)容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。
7、平面向量
向量的運算性質(zhì)及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要“同起點的向量”這一條就OK了。向量共線和垂直的數(shù)學(xué)表達,是計算當(dāng)中經(jīng)常用到的公式。向量的共線定理、基本定理、數(shù)量積公式。分點坐標(biāo)公式是重點內(nèi)容,也是難點內(nèi)容,要花心思記憶。
8、三角恒等變換
這一章公式特別多,像差倍半角公式這類內(nèi)容常會出現(xiàn),所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫好后貼在桌子上,天天都要看。要提一點,就是三角恒等變換是有一定規(guī)律的,記憶的時候可以集合三角函數(shù)去記。
9、解三角形
掌握正弦、余弦公式及其變式、推論、三角面積公式即可。
10、數(shù)列
等差、等比數(shù)列的通項公式、前n項及一些性質(zhì)常出現(xiàn)于填空、解答題中,這部分內(nèi)容學(xué)起來比較簡單,但考驗對其推導(dǎo)、計算、活用的層面較深,因此要仔細??荚囶}中,通項公式、前n項和的內(nèi)容出現(xiàn)頻次較多,這類題看到后要帶有目的的去推導(dǎo)就沒問題了。
11、不等式
這一章一般用線性規(guī)劃的形式來考察學(xué)生,這種題通常是和實際問題聯(lián)系的,所以要會讀題,從題中找不等式,畫出線性規(guī)劃圖,然后再根據(jù)實際問題的限制要求來求最值。
高中數(shù)學(xué)解題的技巧
1、配法
通過把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式解決數(shù)學(xué)問題的方法,叫配方法。配方法用的最多的是配成完全平方式,它是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式,是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達定理
一元二次方程ax2bxc=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。
7、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
8、幾何變換法
在數(shù)學(xué)問題的研究中,常常運用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識。
幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。
9、反證法
反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
高中數(shù)學(xué)知識點全總結(jié)相關(guān)文章:
★ 高中數(shù)學(xué)學(xué)習(xí)方法:知識點總結(jié)最全版