高中數(shù)學(xué)知識點總結(jié)2021
學(xué)習(xí)知識容易,轉(zhuǎn)化成為能力很難;提出問題容易,得到圓滿答復(fù)很難;點評別人容易,身臨其境去做很難;指責(zé)同事容易,正確評價自己很難。下面小編給大家分享一些高中數(shù)學(xué)知識點總結(jié),希望能夠幫助大家,歡迎閱讀!
高中數(shù)學(xué)知識點總結(jié)1
1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑.
2、圓的方程
(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
(2)一般方程
當(dāng)時,方程表示圓,此時圓心為,半徑為
當(dāng)時,表示一個點;當(dāng)時,方程不表示任何圖形.
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求.確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置.
3、高中數(shù)學(xué)必修二知識點總結(jié):直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:k不存在,驗證是否成立k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
設(shè)圓,
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
當(dāng)時兩圓外離,此時有公切線四條;
當(dāng)時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;
當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;
當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓.
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
5、空間點、直線、平面的位置關(guān)系
公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi).
應(yīng)用:判斷直線是否在平面內(nèi)
用符號語言表示公理1:
公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線
符號:平面α和β相交,交線是a,記作α∩β=a.
符號語言:
公理2的作用:
它是判定兩個平面相交的方法.
它說明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線公共點.
它可以判斷點在直線上,即證若干個點共線的重要依據(jù).
公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面.
推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.
公理3及其推論作用:它是空間內(nèi)確定平面的依據(jù)它是證明平面重合的依據(jù)
公理4:平行于同一條直線的兩條直線互相平行
高中數(shù)學(xué)知識點總結(jié)2
一、變量間的相關(guān)關(guān)系
1.常見的兩變量之間的關(guān)系有兩類:一類是函數(shù)關(guān)系,另一類是相關(guān)關(guān)系;與函數(shù)關(guān)系不同,相關(guān)關(guān)系是一種非確定性關(guān)系.
2.從散點圖上看,點分布在從左下角到右上角的區(qū)域內(nèi),兩個變量的這種相關(guān)關(guān)系稱為正相關(guān),點分布在左上角到右下角的區(qū)域內(nèi),兩個變量的相關(guān)關(guān)系為負(fù)相關(guān).
二、兩個變量的線性相關(guān)
1.從散點圖上看,如果這些點從整體上看大致分布在通過散點圖中心的一條直線附近,稱兩個變量之間具有線性相關(guān)關(guān)系,這條直線叫回歸直線.
當(dāng)r>0時,表明兩個變量正相關(guān);
當(dāng)r<0時,表明兩個變量負(fù)相關(guān).
r的絕對值越接近于1,表明兩個變量的線性相關(guān)性越強(qiáng).r的絕對值越接近于0時,表明兩個變量之間幾乎不存在線性相關(guān)關(guān)系.通常|r|大于0.75時,認(rèn)為兩個變量有很強(qiáng)的線性相關(guān)性.
三、解題方法
1.相關(guān)關(guān)系的判斷方法一是利用散點圖直觀判斷,二是利用相關(guān)系數(shù)作出判斷.
2.對于由散點圖作出相關(guān)性判斷時,若散點圖呈帶狀且區(qū)域較窄,說明兩個變量有一定的線性相關(guān)性,若呈曲線型也是有相關(guān)性.
3.由相關(guān)系數(shù)r判斷時|r|越趨近于1相關(guān)性越強(qiáng).
高中數(shù)學(xué)知識點總結(jié)3
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導(dǎo)數(shù)法(適用于多項式函數(shù))
復(fù)合函數(shù)法和圖像法。
應(yīng)用:比較大小,證明不等式,解不等式。
奇偶性:
定義:注意區(qū)間是否關(guān)于原點對稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);
f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
判別方法:定義法,圖像法,復(fù)合函數(shù)法
應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應(yīng)用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。
四、圖形變換:函數(shù)圖像變換:(重點)要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。
常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)
平移變換y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過平移得到函數(shù)y=f(2x+4)的圖象。
(ⅱ)會結(jié)合向量的平移,理解按照向量(m,n)平移的意義。
對稱變換y=f(x)→y=f(-x),關(guān)于y軸對稱
y=f(x)→y=-f(x),關(guān)于x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱。(注意:它是一個偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。
一個重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對稱;
高中數(shù)學(xué)知識點總結(jié)4
在中國古代把數(shù)學(xué)叫算術(shù),又稱算學(xué),最后才改為數(shù)學(xué)。
1.任意角
(1)角的分類:
①按旋轉(zhuǎn)方向不同分為正角、負(fù)角、零角.
②按終邊位置不同分為象限角和軸線角.
(2)終邊相同的角:
終邊與角相同的角可寫成+k360(kZ).
(3)弧度制:
①1弧度的角:把長度等于半徑長的弧所對的圓心角叫做1弧度的角.
②規(guī)定:正角的弧度數(shù)為正數(shù),負(fù)角的弧度數(shù)為負(fù)數(shù),零角的弧度數(shù)為零,||=,l是以角作為圓心角時所對圓弧的長,r為半徑.
③用弧度做單位來度量角的制度叫做弧度制.比值與所取的r的大小無關(guān),僅與角的大小有關(guān).
④弧度與角度的換算:360弧度;180弧度.
⑤弧長公式:l=||r,扇形面積公式:S扇形=lr=||r2.
2.任意角的三角函數(shù)
(1)任意角的三角函數(shù)定義:
設(shè)是一個任意角,角的終邊與單位圓交于點P(x,y),那么角的正弦、余弦、正切分別是:sin=y,cos=x,tan=,它們都是以角為自變量,以單位圓上點的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù).
(2)三角函數(shù)在各象限內(nèi)的符號口訣是:一全正、二正弦、三正切、四余弦.
3.三角函數(shù)線
設(shè)角的頂點在坐標(biāo)原點,始邊與x軸非負(fù)半軸重合,終邊與單位圓相交于點P,過P作PM垂直于x軸于M.由三角函數(shù)的定義知,點P的坐標(biāo)為(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,單位圓與x軸的正半軸交于點A,單位圓在A點的切線與的終邊或其反向延長線相交于點T,則tan=AT.我們把有向線段OM、MP、AT叫做的余弦線、正弦線、正切線.
高中數(shù)學(xué)知識點總結(jié)5
1.求函數(shù)的單調(diào)性:
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。
反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),
(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。
2.求函數(shù)的極值:
設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。
可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:
(1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的變化情況:
(4)檢查f(x)的符號并由表格判斷極值。
3.求函數(shù)的值與最小值:
如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的值。函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的。
求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;
(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值。
4.解決不等式的有關(guān)問題:
(1)不等式恒成立問題(絕對不等式問題)可考慮值域。
f(x)(xA)的值域是[a,b]時,
不等式f(x)0恒成立的充要條件是f(x)max0,即b0;
不等式f(x)0恒成立的充要條件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)時,
不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。
(2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。
5.導(dǎo)數(shù)在實際生活中的應(yīng)用:
實際生活求解(小)值問題,通常都可轉(zhuǎn)化為函數(shù)的最值.在利用導(dǎo)數(shù)來求函數(shù)最值時,一定要注意,極值點的單峰函數(shù),極值點就是最值點,在解題時要加以說明。
高中數(shù)學(xué)知識點總結(jié)相關(guān)文章:
★ 高中數(shù)學(xué)學(xué)習(xí)方法:知識點總結(jié)最全版