亚洲高清vr播放在线观看,欧美亚洲精品免费,欧美日韩天堂在线视频,午夜福利小视频

      學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

      高一數(shù)學(xué)必修2知識(shí)總結(jié)

      時(shí)間: 維維0 分享

      高中數(shù)學(xué)知識(shí)比較多,需要記憶的知識(shí)點(diǎn)原理也很多,數(shù)學(xué)知識(shí)結(jié)構(gòu)圖能夠幫助同學(xué)們了解數(shù)學(xué)大體結(jié)構(gòu),更好的學(xué)習(xí)數(shù)學(xué)。下面給大家分享一些關(guān)于高一數(shù)學(xué)必修2知識(shí)總結(jié),希望對(duì)大家有所幫助。

      高一數(shù)學(xué)必修2知識(shí)1

      立體幾何初步1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

      (1)棱柱:

      幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

      (2)棱錐

      幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.

      (3)棱臺(tái):

      幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

      (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

      幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形.

      (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

      幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形.

      (6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

      幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形.

      (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

      幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑.

      2、空間幾何體的三視圖

      定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

      俯視圖(從上向下)

      注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度.

      3、空間幾何體的直觀圖——斜二測(cè)畫法

      斜二測(cè)畫法特點(diǎn):①原來與x軸平行的線段仍然與x平行且長度不變;

      ②原來與y軸平行的線段仍然與y平行,長度為原來的一半.

      4、柱體、錐體、臺(tái)體的表面積與體積

      (1)幾何體的表面積為幾何體各個(gè)面的面積的和.

      (2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

      (3)柱體、錐體、臺(tái)體的體積公式

      高一數(shù)學(xué)必修2知識(shí)2

      直線與方程(1)直線的傾斜角

      定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

      (2)直線的斜率

      ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

      當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),不存在.

      ②過兩點(diǎn)的直線的斜率公式:

      注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;

      (2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

      (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到.

      (3)直線方程

      ①點(diǎn)斜式:直線斜率k,且過點(diǎn)

      注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1.

      當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1.

      ②斜截式:,直線斜率為k,直線在y軸上的截距為b

      ③兩點(diǎn)式:()直線兩點(diǎn),

      ④截矩式:

      其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為.

      ⑤一般式:(A,B不全為0)

      注意:各式的適用范圍特殊的方程如:

      平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

      (5)直線系方程:即具有某一共同性質(zhì)的直線

      (一)平行直線系

      平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

      (二)垂直直線系

      垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

      (三)過定點(diǎn)的直線系

      (ⅰ)斜率為k的直線系:,直線過定點(diǎn);

      (ⅱ)過兩條直線,的交點(diǎn)的直線系方程為

      (為參數(shù)),其中直線不在直線系中.

      (6)兩直線平行與垂直

      注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否.

      (7)兩條直線的交點(diǎn)

      相交

      交點(diǎn)坐標(biāo)即方程組的一組解.

      方程組無解;方程組有無數(shù)解與重合

      (8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn)

      (9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離

      (10)兩平行直線距離公式

      在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解.

      高一數(shù)學(xué)必修2知識(shí)3

      圓的方程1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑.

      2、圓的方程

      (1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

      (2)一般方程

      當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

      當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形.

      (3)求圓方程的方法

      一般都采用待定系數(shù)法:先設(shè)后求.確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

      需求出a,b,r;若利用一般方程,需要求出D,E,F;

      另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置.

      高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié):直線與圓的位置關(guān)系:

      直線與圓的位置關(guān)系有相離,相切,相交三種情況:

      (1)設(shè)直線,圓,圓心到l的距離為,則有;;

      (2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

      (3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

      4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

      設(shè)圓,

      兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

      當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;

      當(dāng)時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

      當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

      當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;

      當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓.

      注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

      4、空間點(diǎn)、直線、平面的位置關(guān)系

      公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi).

      應(yīng)用:判斷直線是否在平面內(nèi)

      用符號(hào)語言表示公理1:

      公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線

      符號(hào):平面α和β相交,交線是a,記作α∩β=a.

      符號(hào)語言:

      公理2的作用:

      ①它是判定兩個(gè)平面相交的方法.

      ②它說明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過公共點(diǎn).

      ③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù).

      公理3:經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面.

      推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.

      公理3及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)

      公理4:平行于同一條直線的兩條直線互相平行

      高一數(shù)學(xué)必修2知識(shí)總結(jié)相關(guān)文章

      高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)

      2019年高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)(復(fù)習(xí)提綱)

      高中數(shù)學(xué)必修2空間幾何體知識(shí)點(diǎn)歸納總結(jié)

      高中數(shù)學(xué)填空題的常用解題方法與必修二知識(shí)點(diǎn)全面總結(jié)

      高一數(shù)學(xué)必修二公式總結(jié)全

      高一數(shù)學(xué)必修二所有公式總結(jié)

      高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)匯總

      高一數(shù)學(xué)必修2目錄

      650056