亚洲高清vr播放在线观看,欧美亚洲精品免费,欧美日韩天堂在线视频,午夜福利小视频

      學(xué)習(xí)啦 > >

      高三數(shù)學(xué)知識(shí)點(diǎn)歸納

      時(shí)間: 康華0 分享

      我們學(xué)生時(shí)期好比是人生的春天,只有從現(xiàn)在起熱愛(ài)學(xué)習(xí)、勤奮讀書(shū),養(yǎng)成良好行為習(xí)慣,打好各方面素質(zhì)基礎(chǔ),下面是小編為大家整理的高三數(shù)學(xué)知識(shí)點(diǎn)歸納,如果大家喜歡可以分享給身邊的朋友。

      高三數(shù)學(xué)知識(shí)點(diǎn)歸納

      高三數(shù)學(xué)知識(shí)點(diǎn)歸納精選篇1

      1.不等式的定義

      在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.

      2.比較兩個(gè)實(shí)數(shù)的大小

      兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來(lái)定義的,

      有a-b>0?;a-b=0?;a-b<0?.

      另外,若b>0,則有>1?;=1?;<1?.

      概括為:作差法,作商法,中間量法等.

      3.不等式的性質(zhì)

      (1)對(duì)稱(chēng)性:a>b?;

      (2)傳遞性:a>b,b>c?;

      (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

      (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

      (5)可乘方:a>b>0?(n∈N,n≥2);

      (6)可開(kāi)方:a>b>0?(n∈N,n≥2).

      復(fù)習(xí)指導(dǎo)

      1.“一個(gè)技巧”作差法變形的`技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

      2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.

      3.“兩條常用性質(zhì)”

      (1)倒數(shù)性質(zhì):①a>b,ab>0?<;②a<0

      ③a>b>0,0;④0

      (2)若a>b>0,m>0,則

      ①真分?jǐn)?shù)的性質(zhì):<;>(b-m>0);

      高三數(shù)學(xué)知識(shí)點(diǎn)歸納精選篇2

      第一部分集合

      (1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

      (2)注意:討論的時(shí)候不要遺忘了的情況。

      第二部分函數(shù)與導(dǎo)數(shù)

      1、映射:注意①第一個(gè)集合中的元素必須有象;②一對(duì)一,或多對(duì)一。

      2、函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調(diào)性;⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對(duì)值的意義等);⑧利用函數(shù)有界性(、、等);⑨導(dǎo)數(shù)法

      3、復(fù)合函數(shù)的有關(guān)問(wèn)題

      (1)復(fù)合函數(shù)定義域求法:

      ①若f(x)的.定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出

      ②若f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。

      (2)復(fù)合函數(shù)單調(diào)性的判定:

      ①首先將原函數(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

      ②分別研究?jī)?nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

      ③根據(jù)“同性則增,異性則減”來(lái)判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

      注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

      4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問(wèn)題,先分段解決,再下結(jié)論。

      5、函數(shù)的奇偶性

      ⑴函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng)是函數(shù)具有奇偶性的必要條件;

      ⑵是奇函數(shù);

      ⑶是偶函數(shù);

      ⑷奇函數(shù)在原點(diǎn)有定義,則;

      ⑸在關(guān)于原點(diǎn)對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

      (6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;

      1、對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(—x)=—f(x),那么f(x)為奇函數(shù);

      2、對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(—x)=f(x),那么f(x)為偶函數(shù);

      3、一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,b)成中心對(duì)稱(chēng);

      4、一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x都有f(a+x)=f(a—x),則它的圖象關(guān)于x=a成軸對(duì)稱(chēng)。

      5、函數(shù)是奇函數(shù)或是偶函數(shù)稱(chēng)為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

      6、由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則—x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱(chēng))。

      高三數(shù)學(xué)知識(shí)點(diǎn)歸納精選篇3

      三角函數(shù)。

      注意歸一公式、誘導(dǎo)公式的正確性。

      數(shù)列題。

      1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫(xiě)上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列;

      2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫(xiě)上綜上:由①②得證;

      3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單

      立體幾何題。

      1、證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;

      2、求異面直線所成的角、線面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系;

      3、注意向量所成的角的.余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

      概率問(wèn)題。

      1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);

      2、搞清是什么概率模型,套用哪個(gè)公式;

      3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

      4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1);

      5、注意計(jì)數(shù)時(shí)利用列舉、樹(shù)圖等基本方法;

      6、注意放回抽樣,不放回抽樣;

      正弦、余弦典型例題。

      1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

      2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

      3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

      4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

      5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。

      正弦、余弦解題訣竅。

      1、已知兩角及一邊,或兩邊及一邊的對(duì)角(對(duì)三角形是否存在要討論)用正弦定理。

      2、已知三邊,或兩邊及其夾角用余弦定理

      3、余弦定理對(duì)于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。

      高三數(shù)學(xué)知識(shí)點(diǎn)歸納精選篇4

      等式的性質(zhì):

      ①不等式的性質(zhì)可分為不等式基本性質(zhì)和不等式運(yùn)算性質(zhì)兩部分。

      不等式基本性質(zhì)有:

      (1)a>bb

      (2)a>b,b>ca>c(傳遞性)

      (3)a>ba+c>b+c(c∈R)

      (4)c>0時(shí),a>bac>bc

      c<0時(shí),a>bac

      運(yùn)算性質(zhì)有:

      (1)a>b,c>da+c>b+d。

      (2)a>b>0,c>d>0ac>bd。

      (3)a>b>0an>bn(n∈N,n>1)。

      (4)a>b>0>(n∈N,n>1)。

      應(yīng)注意,上述性質(zhì)中,條件與結(jié)論的邏輯關(guān)系有兩種:“”和“”即推出關(guān)系和等價(jià)關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價(jià)變換。因此,要正確理解和應(yīng)用不等式性質(zhì)。

      ②關(guān)于不等式的性質(zhì)的考察,主要有以下三類(lèi)問(wèn)題:

      (1)根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。

      (2)利用不等式的性質(zhì)及實(shí)數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實(shí)數(shù)值的大小。

      (3)利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。

      高中數(shù)學(xué)集合復(fù)習(xí)知識(shí)點(diǎn)

      任一A,B,記做AB

      AB,BA ,A=B

      AB={|A|,且|B|}

      AB={|A|,或|B|}

      Card(AB)=card(A)+card(B)-card(AB)

      (1)命題

      原命題若p則q

      逆命題若q則p

      否命題若p則q

      逆否命題若q,則p

      (2)AB,A是B成立的充分條件

      BA,A是B成立的`必要條件

      AB,A是B成立的充要條件

      1.集合元素具有①確定性;②互異性;③無(wú)序性

      2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

      (3)集合的運(yùn)算

      ①A∩(B∪C)=(A∩B)∪(A∩C)

      ②Cu(A∩B)=CuA∪CuB

      Cu(A∪B)=CuA∩CuB

      (4)集合的性質(zhì)

      n元集合的字集數(shù):2n

      真子集數(shù):2n-1;

      非空真子集數(shù):2n-2

      高中數(shù)學(xué)集合知識(shí)點(diǎn)歸納

      1、集合的概念

      集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說(shuō)明:某些制定的且不同的對(duì)象集合在一起就稱(chēng)為一個(gè)集合。組成集合的對(duì)象叫元素,集合通常用大寫(xiě)字母A、B、C、…來(lái)表示。元素常用小寫(xiě)字母a、b、c、…來(lái)表示。

      集合是一個(gè)確定的整體,因此對(duì)集合也可以這樣描述:具有某種屬性的對(duì)象的全體組成的一個(gè)集合。

      2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:

      元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

      3、集合中元素的特性

      (1)確定性:設(shè)A是一個(gè)給定的集合,_是某一具體對(duì)象,則_或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

      (2)互異性:“集合張的元素必須是互異的”,就是說(shuō)“對(duì)于一個(gè)給定的集合,它的任何兩個(gè)元素都是不同的”。

      (3)無(wú)序性:集合與其中元素的排列次序無(wú)關(guān),如集合{a,b,c}與集合{c,b,a}是同一個(gè)集合。

      4、集合的分類(lèi)

      集合科根據(jù)他含有的元素個(gè)數(shù)的多少分為兩類(lèi):

      有限集:含有有限個(gè)元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個(gè)數(shù)是可數(shù)的,因此兩個(gè)集合是有限集。

      無(wú)限集:含有無(wú)限個(gè)元素的集合,如“到平面上兩個(gè)定點(diǎn)的距離相等于所有點(diǎn)”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無(wú)限集。

      特別的,我們把不含有任何元素的集合叫做空集,記錯(cuò)F,如{|R|+1=0}。

      5、特定的集合的表示

      為了書(shū)寫(xiě)方便,我們規(guī)定常見(jiàn)的數(shù)集用特定的字母表示,下面是幾種常見(jiàn)的數(shù)集表示方法,請(qǐng)牢記。

      (1)全體非負(fù)整數(shù)的集合通常簡(jiǎn)稱(chēng)非負(fù)整數(shù)集(或自然數(shù)集),記做N。

      (2)非負(fù)整數(shù)集內(nèi)排出0的集合,也稱(chēng)正整數(shù)集,記做N_或N+。

      (3)全體整數(shù)的集合通常簡(jiǎn)稱(chēng)為整數(shù)集Z。

      (4)全體有理數(shù)的集合通常簡(jiǎn)稱(chēng)為有理數(shù)集,記做Q。

      (5)全體實(shí)數(shù)的集合通常簡(jiǎn)稱(chēng)為實(shí)數(shù)集,記做R。

      高三數(shù)學(xué)知識(shí)點(diǎn)歸納精選篇5

      1、圓柱體:

      表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

      2、圓錐體:

      表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

      3、正方體

      a—邊長(zhǎng),S=6a2,V=a3

      4、長(zhǎng)方體

      a—長(zhǎng),b—寬,c—高S=2(ab+ac+bc)V=abc

      5、棱柱

      S—底面積h—高V=Sh

      6、棱錐

      S—底面積h—高V=Sh/3

      7、棱臺(tái)

      S1和S2—上、下底面積h—高V=h[S1+S2+(S1S2)^1/2]/3

      8、擬柱體

      S1—上底面積,S2—下底面積,S0—中截面積

      h—高,V=h(S1+S2+4S0)/6

      9、圓柱

      r—底半徑,h—高,C—底面周長(zhǎng)

      S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr

      S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

      10、空心圓柱

      R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)

      11、直圓錐

      r—底半徑h—高V=πr^2h/3

      12、圓臺(tái)

      r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/3

      13、球

      r—半徑d—直徑V=4/3πr^3=πd^3/6

      14、球缺

      h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3

      15、球臺(tái)

      r1和r2—球臺(tái)上、下底半徑h—高V=πh[3(r12+r22)+h2]/6

      16、圓環(huán)體

      R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑

      V=2π2Rr2=π2Dd2/4

      17、桶狀體

      D—桶腹直徑d—桶底直徑h—桶高

      V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)

      V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

      1984668