初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
學(xué)習(xí)從來(lái)無(wú)捷徑。每一門科目都有自己的學(xué)習(xí)方法,但其實(shí)都是萬(wàn)變不離其中的,數(shù)學(xué)其實(shí)和語(yǔ)文英語(yǔ)一樣,也是要記、要背、要練的。下面是小編給大家整理的初二數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家有所幫助。
初二上學(xué)期數(shù)學(xué)知識(shí)點(diǎn)歸納
分式方程
一、理解定義
1、分式方程:含分式,并且分母中含未知數(shù)的方程——分式方程。
2、解分式方程的思路是:
(1)在方程的兩邊都乘以最簡(jiǎn)公分母,約去分母,化成整式方程。
(2)解這個(gè)整式方程。
(3)把整式方程的根帶入最簡(jiǎn)公分母,看結(jié)果是不是為零,使最簡(jiǎn)公分母為零的根是原方程的增根,必須舍去。
(4)寫出原方程的根。
“一化二解三檢驗(yàn)四總結(jié)”
3、增根:分式方程的增根必須滿足兩個(gè)條件:
(1)增根是最簡(jiǎn)公分母為0;(2)增根是分式方程化成的整式方程的.根。
八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
一、在平面內(nèi),確定物體的位置一般需要兩個(gè)數(shù)據(jù)。
二、平面直角坐標(biāo)系及有關(guān)概念
1、平面直角坐標(biāo)系
在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
2、為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個(gè)象限。
3、點(diǎn)的坐標(biāo)的概念
對(duì)于平面內(nèi)任意一點(diǎn)P,過(guò)點(diǎn)P分別x軸、y軸向作垂線,垂足在上x軸、y軸對(duì)應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(duì)(a,b)叫做點(diǎn)P的坐標(biāo)。
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。
平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的。
八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)整理
不等式的解集:
1、能使不等式成立的未知數(shù)的值,叫做不等式的解;一個(gè)不等式的所有解,組成這個(gè)不等式的解集;求不等式的解集的過(guò)程,叫做解不等式.
2、不等式的解可以有無(wú)數(shù)多個(gè),一般是在某個(gè)范圍內(nèi)的所有數(shù),與方程的解不同.
3、不等式的解集在數(shù)軸上的表示:
用數(shù)軸表示不等式的解集時(shí),要確定邊界和方向:
①邊界:有等號(hào)的是實(shí)心圓圈,無(wú)等號(hào)的是空心圓圈;
②方向:大向右,小向左
四、一元一次不等式:
1、只含有一個(gè)未知數(shù),且含未知數(shù)的式子是整式,未知數(shù)的次數(shù)是1.像這樣的不等式叫做一元一次不等式.
2、解一元一次不等式的過(guò)程與解一元一次方程類似,特別要注意,當(dāng)不等式兩邊都乘以一個(gè)負(fù)數(shù)時(shí),不等號(hào)要改變方向.
3、解一元一次不等式的步驟:
①去分母;
②去括號(hào);
③移項(xiàng);
④合并同類項(xiàng);
⑤系數(shù)化為1(不等號(hào)的改變問(wèn)題)
4、一元一次不等式基本情形為ax>b(或ax
①當(dāng)a>0時(shí),解為;
②當(dāng)a=0時(shí),且b<0,則x取一切實(shí)數(shù);
當(dāng)a=0時(shí),且b≥0,則無(wú)解;
③當(dāng)a<0時(shí),解為;
5、不等式應(yīng)用的探索(利用不等式解決實(shí)際問(wèn)題)
列不等式解應(yīng)用題基本步驟與列方程解應(yīng)用題相類似,即:
①審:認(rèn)真審題,找出題中的不等關(guān)系,要抓住題中的關(guān)鍵字眼,如"大于"、"小于"、"不大于"、"不小于"等含義;
②設(shè):設(shè)出適當(dāng)?shù)奈粗獢?shù);
③列:根據(jù)題中的不等關(guān)系,列出不等式;
④解:解出所列的不等式的解集;
⑤答:寫出答案,并檢驗(yàn)答案是否符合題意.
初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)相關(guān)文章:
★ 初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)
★ 人教版八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)
★ 初二數(shù)學(xué)知識(shí)點(diǎn)歸納上冊(cè)人教版
★ 八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)整理歸納
★ 初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 八年級(jí)上冊(cè)數(shù)學(xué)總復(fù)習(xí)知識(shí)點(diǎn)
★ 初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)歸納
★ 初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)