亚洲高清vr播放在线观看,欧美亚洲精品免费,欧美日韩天堂在线视频,午夜福利小视频

      學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

      高一數(shù)學(xué)公式(必修一)

      時間: 淑娟0 分享

      高中數(shù)學(xué)背的話就是那些公式,但主要還是要理解吧,高中數(shù)學(xué)比較靈活,不是說你背了一定可以考好,關(guān)鍵還是要理解會用,今天小編在這給大家整理了高一數(shù)學(xué)公式總結(jié),接下來隨著小編一起來看看吧!

      高一必修一數(shù)學(xué)公式

      ▼▼目錄▼▼
      【和差化積】
      【某些數(shù)列前n項和】
      【判別式】【兩角和公式】
      【倍角公式】
      【半角公式】
      【降冪公式】
      【萬能公式】
      【數(shù)學(xué)公式順口溜】
      【相關(guān)文章】

      高一數(shù)學(xué)必修一公式

      【和差化積】

      2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

      2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

      sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

      tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

      ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

      返回目錄

      【某些數(shù)列前n項和】

      1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

      2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

      13+23+33+43+53+63+…n3=n2(n+1)2/4 1x2+2x3+3x4+4x5+5x6+6x7+…+n(n+1)=n(n+1)(n+2)/3

      正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

      余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

      弧長公式 l=axr a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2xlxr

      乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

      三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

      |a-b|≥|a|-|b| -|a|≤a≤|a|

      一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

      根與系數(shù)的關(guān)系 X1+X2=-b/a X1xX2=c/a 注:韋達(dá)定理

      返回目錄

      【判別式】

      b2-4ac=0 注:方程有兩個相等的實根

      b2-4ac>0 注:方程有兩個不等的實根

      b2-4ac<0 注:方程沒有實根,有共軛復(fù)數(shù)根

      【兩角和公式】

      sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

      cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

      tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

      ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

      返回目錄

      【倍角公式】

      tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

      cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

      【半角公式】

      sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

      cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

      tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

      ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

      返回目錄

      【降冪公式】

      (sin^2)x=1-cos2x/2

      (cos^2)x=i=cos2x/2

      【萬能公式】

      令tan(a/2)=t

      sina=2t/(1+t^2)

      cosa=(1-t^2)/(1+t^2)

      tana=2t/(1-t^2)

      返回目錄

      高中數(shù)學(xué)公式順口溜

      一、《集合與函數(shù)》

      內(nèi)容子交并補集,還有冪指對函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。

      復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓。

      指數(shù)與對數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。

      函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無對數(shù);

      正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實數(shù)集,多種情況求交集。

      兩個互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對稱,Y=X是對稱軸;

      求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。

      冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),

      奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。

      二、《三角函數(shù)》

      三角函數(shù)是函數(shù),象限符號坐標(biāo)注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。

      同角關(guān)系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

      中心記上數(shù)字1,連結(jié)頂點三角形;向下三角平方和,倒數(shù)關(guān)系是對角,

      頂點任庖緩扔諍竺媼礁S盞脊驕褪嗆茫夯蟠蠡。?nbsp;

      變成稅角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,

      將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,

      余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

      計算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。

      逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

      萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

      1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范;

      三角函數(shù)反函數(shù),實質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

      利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集;

      三、《不等式》

      解不等式的途徑,利用函數(shù)的性質(zhì)。對指無理不等式,化為有理不等式。

      高次向著低次代,步步轉(zhuǎn)化要等價。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。

      證不等式的方法,實數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭高下。

      直接困難分析好,思路清晰綜合法。非負(fù)常用基本式,正面難則反證法。

      還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來幫助,畫圖建模構(gòu)造法。

      四、《數(shù)列》

      等差等比兩數(shù)列,通項公式N項和。兩個有限求極限,四則運算順序換。

      數(shù)列問題多變幻,方程化歸整體算。數(shù)列求和比較難,錯位相消巧轉(zhuǎn)換,

      取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:

      一算二看三聯(lián)想,猜測證明不可少。還有數(shù)學(xué)歸納法,證明步驟程序化:

      首先驗證再假定,從K向著K加1,推論過程須詳盡,歸納原理來肯定。

      五、《復(fù)數(shù)》

      虛數(shù)單位i一出,數(shù)集擴大到復(fù)數(shù)。一個復(fù)數(shù)一對數(shù),橫縱坐標(biāo)實虛部。

      對應(yīng)復(fù)平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。

      箭桿的長即是模,常將數(shù)形來結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。

      代數(shù)運算的實質(zhì),有i多項式運算。i的正整數(shù)次慕,四個數(shù)值周期現(xiàn)。

      一些重要的結(jié)論,熟記巧用得結(jié)果。虛實互化本領(lǐng)大,復(fù)數(shù)相等來轉(zhuǎn)化。

      利用方程思想解,注意整體代換術(shù)。幾何運算圖上看,加法平行四邊形,

      減法三角法則判;乘法除法的運算,逆向順向做旋轉(zhuǎn),伸縮全年模長短。

      三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。

      輻角運算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,

      兩個不會為實數(shù),比較大小要不得。復(fù)數(shù)實數(shù)很密切,須注意本質(zhì)區(qū)別。

      六、《排列、組合、二項式定理》

      加法乘法兩原理,貫穿始終的法則。與序無關(guān)是組合,要求有序是排列。

      兩個公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問題須轉(zhuǎn)化。

      排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。

      不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。

      關(guān)于二項式定理,中國楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。

      七、《立體幾何》

      點線面三位一體,柱錐臺球為代表。距離都從點出發(fā),角度皆為線線成。

      垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環(huán)現(xiàn)。

      方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。

      立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關(guān)鍵。

      異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問題一大片。

      八、《平面解析幾何》

      有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標(biāo),數(shù)形結(jié)合稱典范。

      笛卡爾的觀點對,點和有序?qū)崝?shù)對,兩者—一來對應(yīng),開創(chuàng)幾何新途徑。

      兩種思想相輝映,化歸思想打前陣;都說待定系數(shù)法,實為方程組思想。

      三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。

      四件工具是法寶,坐標(biāo)思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求。

      解析幾何是幾何,得意忘形學(xué)不活。圖形直觀數(shù)入微,數(shù)學(xué)本是數(shù)形學(xué)。


      高一數(shù)學(xué)公式總結(jié)(必修一)相關(guān)文章

      高一數(shù)學(xué)公式總結(jié)(必修一)

      高一數(shù)學(xué)必修一公式歸納

      高一數(shù)學(xué)必修一公式大全

      高一數(shù)學(xué)公式必修一整理

      高一數(shù)學(xué)必修一函數(shù)知識點總結(jié)歸納

      高一數(shù)學(xué)公式必修一

      高一數(shù)學(xué)必修一知識點匯總

      高一數(shù)學(xué)必修一知識點總結(jié)

      高一數(shù)學(xué)知識點總結(jié)【必修一】

      高一數(shù)學(xué)必修一的知識點

      高一數(shù)學(xué)公式(必修一)

      高中數(shù)學(xué)背的話就是那些公式,但主要還是要理解吧,高中數(shù)學(xué)比較靈活,不是說你背了一定可以考好,關(guān)鍵還是要理解會用,今天小編在這給大家整理了高一數(shù)學(xué)公式總結(jié),接下來隨著小編一起來看看吧!▼▼目錄▼▼【和差
      推薦度:
      點擊下載文檔文檔為doc格式

      精選文章

      • 高一數(shù)學(xué)集合知識點
        高一數(shù)學(xué)集合知識點

        在高一數(shù)學(xué)中,我們首先學(xué)習(xí)的是集合這個知識點,集合看起來簡單,其實真要弄明白還是需要花費一些時間的哲學(xué)說一切事物都是有聯(lián)系的,這不僅體現(xiàn)

      • 趣味數(shù)學(xué)題腦筋急轉(zhuǎn)彎
        趣味數(shù)學(xué)題腦筋急轉(zhuǎn)彎

        數(shù)學(xué)講究你的計算速度,如果能你的計算速度偏慢,你做題肯定120分鐘做完你所會的題目,這個時間是不夠用的,另一個呢,就是你的準(zhǔn)度。今天小編在這

      • 關(guān)于數(shù)學(xué)小故事匯總
        關(guān)于數(shù)學(xué)小故事匯總

        數(shù)學(xué)是知識的工具,亦是其它知識工具的泉源。所有研究順序和度量的科學(xué)均和數(shù)學(xué)有關(guān)。今天小編在這給大家整理了數(shù)學(xué)小故事大全,接下來隨著小編一

      • 經(jīng)典數(shù)學(xué)小故事合集
        經(jīng)典數(shù)學(xué)小故事合集

        數(shù)學(xué)是研究現(xiàn)實生活中數(shù)量關(guān)系和空間形式的數(shù)學(xué)——恩格斯。今天小編在這給大家整理了數(shù)學(xué)小故事大全,接下來隨著小編一起來看看吧!數(shù)學(xué)小故事(一

      498487